
A Formal Approach to Multi-Layered Privileges for
Enclaves

Ganxiang Yang, Chenyang Liu, Zhen Huang, Guoxing Chen*✉, Hongfei Fu, Yuanyuan Zhang, Haojin Zhu
Shanghai Jiao Tong University, China

{yangganxiang, zzshlcyy, xmhuangzhen, guoxingchen, jt002845, yyjess, zhu-hj}@sjtu.edu.cn

Abstract—Trusted Execution Environments (TEE) have been
widely adopted as a protection approach for security-critical
applications. Although feature extensions have been previously
proposed to improve the usability of enclaves, their provision
patterns are still confronted with security challenges. This paper
presents PALANTÍR, a verifiable multi-layered inter-enclave priv-
ilege model for secure feature extensions to enclaves. Specifically,
a parent-children inter-enclave relationship, with which a parent
enclave is granted two privileged permissions, the Execution Con-
trol and Spatial Control, over its children enclaves to facilitate
secure feature extensions, is introduced. Moreover, by enabling
nesting parent-children relationships, PALANTÍR achieves multi-
layered privileges (MLP) that allow feature extensions to be
placed in various privilege layers following the Principle of Least
Privilege. To prove the security of PALANTÍR, we verified that our
privilege model does not break or weaken the security guarantees
of enclaves by building and verifying a formal model named
TAP∞. Furthermore, We implemented a prototype of PALANTÍR
on PENGLAI, an open-sourced RISC-V TEE platform. The eval-
uation demonstrates the promising performance of PALANTÍR in
runtime overhead (< 5%) and startup latencies.

I. INTRODUCTION

As an evolving and promising security approach for protect-
ing the users’ sensitive data in programs, Trusted Execution
Environment (TEE) [9], [17], [23], [32], [35], [37] has at-
tracted numerous developers and researchers [8], [11], [47] to
explore design patterns and applications on it [41], [42], [46],
[50], [54], [58]. TEE introduces a secure area within the CPU,
dubbed enclave, and protects the confidentiality and integrity
of the code and data loaded within the enclave against even
malicious privileged software like the operating system.

Excluding the privileged software, such as OS, from an
enclave’s TCB deprives the enclave of common features
provided by privileged software, such as inter-process commu-
nication and virtual-machine-related operations, thus limiting
the application of TEE. To address such deficiencies, plenty
of diverse work has been proposed to bring various features
back to TEE [26], [34], [61], [63], [64].

*Guoxing Chen is the corresponding author.

 Firmware

PL 1

Instruction Extension

Trusted

Modules

 Enclave

 Runtime
SDK

Extension

Firmware

Extension

PL 2

PL 3

PL 0

E-App 1 E-App2

(a) Architecture-Level
Extension

PL 1
Trusted

Modules

 Enclave

 Runtime
SDK

Extension

E-App

Instrumented

Original Code

Control Threads

Trusted Roots

PL 2

PL 3

PL 0

(b) Intra-Enclave
Compartmentalization

E-App

Enclave

Firmware

Extension

 Enclave

 Runtime
SDK

Extension

PL 1

PL 2

PL 3

PL 0

PL (λ−1)

PL λ

…

Enclave

Enclave…

Enclave

(c) PALANTÍR
Design

Fig. 1: Design patterns of feature extension to enclaves.
Green-colored boxes indicate Trusted Computing Base (TCB)
newly introduced by feature extensions for serving E-Apps.
The term E-App stands for Enclave Application, and PL for
Privilege Level. The symbol → indicates the parent-to-children
relationship.

Due to the lack of a suitable privilege level to serve
such extended features, existing work usually follows two
design patterns, as shown in Fig. 1a and 1b. The first design
pattern is Architecture-Level Extension. As shown in Fig. 1a,
new features are enabled by modifying the architecture-level
components, including machine mode and even the underlying
hardware. For example, Cerberus [34] implemented its feature
inside the secure monitor (located in the machine mode of the
RISC-V architecture). SMILE [64] introduces a new trusted
root located in x86 System Management Mode. However, this
design monolithically integrated the feature into the privi-
leged firmware, lacking fine-grained modularization, thereby
violating the Principle of Least Privilege (PoLP) [48], which
suggests that every module in a design should only access the
resources and privileges that are necessary for its legitimate
purpose.

The second design pattern is Intra-Enclave Compartmental-
ization (IEC). As shown in Fig. 1b, new features are supported
via software-based compartmentalization within the enclave.
For example, SGX-Migration [26] introduces a control thread
inside an enclave for seamless live migration of the en-
clave. Zhao et al. [63] proposes multi-layer intra-enclave
compartmentalization (MLIEC) to divide the enclave address
space into multiple security layers to support enclave reuses.
However, the security of this design pattern highly depends

Network and Distributed System Security (NDSS) Symposium 2025
24 - 28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.241301
www.ndss-symposium.org

on correct and bug-free software implementation, lacking
architecture-level protection. Recent work [5], [6], [7] has
shown that code vulnerabilities in implementing software-
based compartmentalization could be exploited to compromise
the whole enclave.

Both of the feature extension patterns above exhibit security
drawbacks, necessitating the proposal of a secure feature
extension pattern. Ideally, from the perspective of the under-
lying platform, new features should be placed at a privilege
level similar to existing enclaves, given that they solely serve
these enclaves. From the perspective of existing enclaves, new
features should be placed at a privilege level slightly higher
than their privilege level to enjoy architecture-level protection.
Furthermore, for complex features, multi-layered privileges
are desired to better align with PoLP as different modules
within a feature might require diverse accesses to resources
and privileges. For example, the Reusable Enclave [63] feature
proposed by Zhao et al. requires three levels of privileges, i.e.,
a higher privilege level for nested attestation, a median priv-
ilege level for snapshot and rewinding, and a lower privilege
level for executing user-provided applications.

A few studies have introduced inter-enclave and intra-
enclave privilege-level separations. For example, Park et al.
proposed Nested Enclave [44], which achieves hierarchical
privilege isolation among enclaves. Specifically, it provides
multiple inner enclaves sharing the same outer enclave through
instruction extensions and meta-data modification, introducing
two privilege levels to these enclaves. Melara et al. pro-
posed EnclaveDom [38], which employs Memory Protection
Keys (MPK) to implement intra-enclave memory tagging,
realizing two privilege levels within an enclave. Although prior
works demonstrate the feasibility and practicality of privilege
separation, they do not support multi-layered privileges (more
than two privilege levels) nor offer formal guarantees. Such
limitations lead to the research problem: Can we design a
verifiable multi-layered privileges model for enclave feature
extensions following PoLP?

In this paper, we propose PALANTÍR, a formally verified
design of multi-layered privileges for enclaves. The key insight
is that, given the existing TEE designs already ensure inter-
enclave secure isolation, we can build multiple privilege layers
among enclaves by introducing parent-children relationships.
The parent enclave is authorized privileged permissions to
access its children enclaves, such as read, pause, and resume.
The software within the parent enclave could function as priv-
ileged features to its children enclaves. Meanwhile, from the
point of view of the underlying platform and other privileged
software, the parent enclave is no different from a legacy
enclave (legacy enclave: an enclave having neither parent nor
children enclaves). Notably, a children enclave can be further
authorized privileged permissions and become the parent en-
clave of another enclave. Such nested privilege authorization
facilitates multi-layered privileges among enclaves as shown
in Fig. 1c.

PALANTÍR introduces two most common and critical privi-
leged permissions needed for providing privileged features to

enclaves, i.e., Spatial Control and Execution Control, which
seven primitives realize. Consequently, the PoLP is achieved
in the sense that only seven primitives for supporting multi-
layered privileges into the architecture level (to enjoy the
architecture-level protection) while leaving the specific im-
plementations of new features in necessary multiple privilege
levels close to that of legacy enclaves .

We portray the security of PALANTÍR as follows: (1) the
security of a legacy enclave or root parent enclave (an parent
enclave that has no parent enclaves) will not be broken or
weakened by any other enclaves, and (2) the security of a
children enclave will not be broken or weakened by any other
enclaves besides its parent enclave due to the two granted
permissions.

We prove the security of PALANTÍR via formal verification.
Based on an existing abstract formal model, TAP [52], we
build TAP∞, an abstract formal model to formalize and
integrate PALANTÍR on generic TEE platforms. Here λ denotes
the number of privilege levels that can be formally verified and
has an upper-bound λ < λmax. We introduced new security
guarantee statements to retrofit our design on TAP∞, including
the Parent-Children Relationship Consistency and Exclusive
Memory Consistency. Note that the introduction of new privi-
lege levels brings a significant model complexity increase from
Ω(nk) to Ω(nkλmax

), with n as the maximum process number
the privileged software and parent enclaves can manage, and
k as the solver-related parameter. To address the complexity
explosion challenge, we utilize Relevancy Propagation and
Proposition De-skolemization as optimization methods to ac-
celerate formal reasoning of TAP∞. By formal verification
and inductive proofs, we guaranteed the security properties
in TAP∞ with unlimited λ (λmax = ∞).

Lastly, we implement a prototype of PALANTÍR based on
a RISC-V TEE platform, PENGLAI [23], and provide two
case studies, i.e., Reusable Enclave and Inter-Enclave Memory
Sharing, that fit cloud confidential computing scenarios. The
evaluation includes the formal verification results and perfor-
mance analysis.

In summary, this paper contributes as follows:
• It proposes PALANTÍR, a multi-layered privilege model

on general enclave platforms that enables secure feature
extensions with the least privilege.

• It builds TAP∞ to formalize the modified enclave platform
model and to verify that it satisfies the Secure Remote Exe-
cution security property via automated formal verification.

• It implements the PALANTÍR prototype based on an open-
sourced enclave platform and provides one case study, the
Hierarchical Deterministic Wallet, for enclaves to demon-
strate the framework usability.

II. BACKGROUND

In this paper, we concentrate on preserving a security
property known as Secure Remote Execution (SRE), which
encompasses the security aspects of remotely executing en-
clave programs, including previously mentioned Integrity and

2

Confidentiality. In the property’s precondition assumptions, the
remote platform provider is considered highly untrustworthy,
capable of compromising privileged software and controlling
the OS, hypervisor, or other vulnerable enclaves. By the
Decomposition Theorem proved by Subramanyan et al. [52],
an enclave platform that satisfies the triad of the properties
below for any enclave program running on it also satisfies the
SRE. So, we set our security guarantee target to prove the
three properties.
• Secure Measurement: The measurement of an enclave

should represent the enclave’s initial state and can be used
for enclave state integrity checking. Moreover, the mea-
surement and the outside input sequence together uniquely
determine the execution of the enclave.

• Integrity: Each enclave executing on a remote platform is
tamper-resistant concerning program execution.

• Confidentiality: Each enclave’s sensitive data will not
be revealed to any untrusted entity, including malicious
platform providers, untrusted privileged software, and other
compromised enclaves or processes.

The SRE property above is satisfied by general enclave
platforms, which have been proved in the Trusted Abstract
Platform (TAP) [52]. Furthermore, multiple real-world TEE
platform implementations have been refined to TAP model,
including the Intel SGX [30] and the MIT Sanctum [17], which
shows the comprehensiveness of TAP by proving the SRE
property are satisfied on these distinct state-of-the-art TEE
platforms. Recently, Lee et al. [34] also proposed TAPC , a
cross-platform memory-sharing primitive based on TAP, and
implemented it on Keystone [35]. In Sec. IX, we perform a
comparative analysis, elucidating the significant distinctions
between our TAP∞ and previous works based on TAP.

This paper verifies the multi-layered privileges model
across general enclave platforms. Indeed, we draw founda-
tional inspiration from the TAP abstract formal model to
develop our TAP∞. As such, verification at the binary- or
instruction-level (e.g. Serval [40]) is not a primary objective
of this study. However, these approaches remain valuable as
they can verify that a given implementation accurately refines
our model at the binary level.

III. THREAT MODEL

Our design follows the typical TEE threat model, in which
a user U deploys her enclaves onto an untrusted platform
in the presence of adversarial A. The adversary A has the
software privileges and may launch various software attacks to
exploit software vulnerabilities and destroy the communication
between the user and her enclaves at will. The integrity and
confidentiality of these enclaves are protected against any
software adversary running in the remote enclave platform.
And we do not consider these enclaves vulnerable or malicious
by themselves.

With PALANTÍR, U can firstly launch parent enclaves to
set up desired features. Subsequently, her other enclaves are
recursively governed by launched parent enclaves and become

Other’s Feature Group’s Feature Group

User

E-App 1

Enclave 1
Enclave Y

Feature 1

Network

Feature N
Feature 2

Enclave 2

Feature 3

Enclave 3

Feature 4

Feature M

…

E-App 2 E-App 3

Enclave Y

Feature M Feature N

Fig. 2: Multi-layered privilege model. Green-colored boxes
indicate privilege layers. Deeper shades represent higher priv-
ilege levels. Blue-colored boxes indicate features the E-App 1
can access. The symbol (→) indicates the parent-to-children
relationship.

their children enclaves. As illustrated in Fig. 2, the features
available to her enclave e equals all features provided by
e’s ancestor enclaves (i.e. Enclave 1 and Enclave 2). The
remote parent enclaves could either be developed by the user U
herself or developed and open-sourced by platform developers
for public verifiability. Also, to minimize the TCB, the users
are encouraged to launch only parent enclaves that provide
necessary features. Notably, the PALANTÍR framework does
not introduce any additional entities to be trusted. Instead, each
used parent enclave can be developed by the user herself as a
feature provider and the coordinator for her enclaves. Regard-
ing security guarantees, we formally verified the primitives of
parent enclaves, ensuring it remains unaffected by any compro-
mised enclaves, including its own children enclaves, other non-
ancestor children enclaves and their children enclaves. We also
verified that the security guarantees of any legacy enclave also
remain unaffected by any other compromised parent enclave
and their children.

Since our primary goal is to design a generic feature
extension pattern, we do not consider any hardware-level side-
channel attacks [56], [39], [49], [55] and leave side-channel
resilient interface design as future work. Similar to previous
work on formally modeling generic TEE platforms [34], [52],
we consider program-specific or TEE-specific defenses [16],
[24], [36], [57], [62] to be orthogonal to our work, as they
could be ported to our platform-specific prototype implemen-
tation. Denial-of-service attacks are also kept out-of-scope to
be consistent with the threat models for existing state-of-the-
art enclave platforms.

IV. DESIGN CHOICES

In Sec. III, we explain how features for children enclaves
are facilitated by their parent enclave and ancestors. We make
specific design choices to support parent-children enclave
relationships to ensure verifiable multi-layered privileges over
enclaves. This section delves into the details of our design
decisions concerning the model and interfaces, which are
crucial for modeling, verification, and implementation.

3

E E

Execution Control

Parent-to-Children

Relationship

PS

E

(a)
Platform without

Privileges

E E E

E E

PS

(b)
Single-Layered

Privilege (✗)

E E

E

E E E

PS

(c)
Multi-Layered
Privileges (✓)

E E E

E E

PS

(d)
Multi-Number

Parents (✗)

Fig. 3: Inter-enclave privilege models. Green-colored nodes
indicate privilege layers. Deeper shades represent higher priv-
ilege levels. The term E stands for Enclave and PS for
Privileged Software. Symbol ✓ indicates the design accepted
by PALANTÍR while ✗ indicates those not accepted.

TABLE I: Spatial isolation permission.

Spatial Isolation Children Enclave Components
Permissions Code Registers Stack Frame Others

read-enabled (✓) R R R R
write-enabled (✗) R RW RW RW

execute-enabled (✗) RX R R R
1 R/W/X indicates read/write/execution permissions.
2 The definition of symbols ✓ and ✗ is the same with that in Fig. 3.
3 Other sections include the .bss and .data sections.

A. Key Privileges of Parent Enclave

We identified the two most critical inter-enclave privileges
necessary for feature extension:

Execution Control. The Execution Control privilege enables
a parent enclave to (1) arbitrarily launch a fresh enclave as
its children enclave and (2) control its children enclave’s
life cycle, which includes starting and stopping its execution,
attestation, etc. PALANTÍR is among the first few enclave
models allow Execution Control among enclaves, specifically
designed to enable parent enclave to establish an efficient
communication and feature provision channel with its children
enclaves.

Spatial Control. The Spatial Control privilege allows any
contents of a children enclave to be unilaterally shared with
its creator parent enclave at any moment. This Spatial Control
scheme significantly expands the range and diversity of fea-
tures that can be developed within parent enclaves by utilizing
the feature extension channel.

Remark. With consideration of convenience, in our description
below, we denote a parent enclave as PE. The children enclaves
governed by a PE are denoted as CEs, as the feature recipients
of the corresponding PE. Noting that a CE can be either
privileged or non-privileged, indicating that a CE can also be
a PE of other CEs.

B. Inter-Enclave Privilege Models

Upon granting Execution Control to PEs, we have effec-
tively established one or more privilege layers between the
privileged software (such as OS and Secure Monitor) and non-
privileged enclaves. Comparative observation revealed that,
unlike the monolithic non-privileged model in Fig. 3a and the
single-layered privilege separation model in Fig. 3b, the multi-
layered privileges (MLP) model in Fig. 3c brought significant
security benefits to users.

First, the MLP adheres to the security principles of modular-
ity and least privilege (PoLP) [48]. Specifically, the MLP de-
sign enables fine-grained privilege level separation among dis-
tinct modules inside one feature. For instance, in the Reusable
Enclave and Live Memory Introspection feature extensions
for enclaves [63], [64], the remote attestation modules for
authentication should be assigned the highest privilege level.
In contrast, other data marshaling functions do not require
such privileges and can be designated to lower levels. By this
privilege separation approach, each module will be positioned
in its least privilege and spatially securely isolated. Second, the
MLP reduces the Trusted Computing Base (TCB) through fine-
grained feature positioning. As depicted in Fig. 2, the TCB
burden for an enclave is confined to the firmware and features
located in its ancestors. In contrast, the monolithic non-
privileged model integrates all features within the firmware,
leading to unnecessary TCB burdens from unused features.

C. Details of Privilege Permissions

In Sec. IV-A and Sec. IV-B, we identified and briefly in-
troduced the distinct privileges of PEs that differentiate them
from legacy enclaves. This section will delve into the detailed
permissions of multi-layered privileges (MLP), inter-enclave
parent relationships, and spatial control. Our discussion aims
to construct a verifiable multi-layered privileges model.

1) Maximum Number of Privilege Layers: Although MLP
offers both security and performance benefits, it also in-
troduces considerable challenges in verification complexity.
Denoting the number of privilege layers by λ, a seemingly
simple approach to enable the MLP is to impose no restrictions
on λ, allowing λ ∈ N+. However, this strategy could lead SMT
solvers to produce inconclusive proofs. This issue arises due
to excessive model complexity and the inability to complete
inductions. Denote n as the maximum process number the
privileged software and parent enclaves can manage and k as
the solver-related parameter. The model complexity of TAP∞

experiences a double-exponential magnitude state explosion
from that of TAP’s Ω(nk) to ours Ω(nkλmax

). We give detailed
complexity analysis in Sec. VI-A and Appendix B.

Given the complexity explosion caused by λ, we tried
to seek a reasonable layer range as λ ∈ Nλ = {n ∈
N | 1 ≤ n < λmax}, to support the feature extension benefits
discussed above and be verified successfully in an acceptable
time. For additional information on determining a suitable
λmax and proving security properties under unlimited layer
(λmax = ∞), refer to Sec. VIII-A.

4

2) Inter-Enclave Parent Relationship: In the inter-enclave
privilege models previously discussed in Sec. IV-B, each en-
clave was configured to have only one unique parent enclave,
namely its creator. However, the parent-children relationships
can be expanded to a more general lattice model by incor-
porating the multi-number parents (MNP) design, as shown
in Fig. 3d. This adaptation allows each enclave to recognize
multiple privileged enclaves as its parents, thereby gaining
access to all features provided by all of its parents.

MNP and MLP are both effective designs for delivering
multiple features to an enclave. Notably, the capability to
deliver multiple features of an MLP mode with a maximum
of λmax = N layers surpasses that of an MNP model with
a maximum of µmax = N parents. Although both models
can access up to N features, only MLP allows for inter-
feature privilege separations, while MNP cannot. Moreover,
the MNP design encounters a significant security challenge
in maintaining Confidentiality. This issue arises from the
Execution Control permission within the MNP model. In MNP,
each enclave e can claim multiple parent enclaves as its
parents, However, only one of these parents can be granted
the Execution Control permission to start up e. In the proof
of Confidentiality, consider two PEs (P1[e] and P2[e]) both
identified as the parents of an enclave e, where P1[e] is
permitted to boot e while P2[e] is not. The adversary can easily
distinguish the two enclaves by observing the differences in
their state transition: the execution flow from the P1[e] will
involve a context switch to e, whereas the execution of the
P2[e] will not. However, proving Confidentiality requires that
adversaries cannot distinguish between the trace of two PEs,
which is impossible for the MNP model.

In conclusion, the multi-number parents (MNP) model
offers feature delivery capabilities comparable to MLP but
violates the Confidentiality requirement in SRE. Consequently,
we exclude the MNP from our inter-enclave privilege model.

3) Spatial Control Permission: Table I shows a privilege
permission list of Spatial Control. For the read-enabled priv-
ilege, the permission details are shown in the first row, where
PE is allowed to load runtime contents from its CE. For the
write-enabled privilege, the PE is also allowed to write data to
CE execution states and data segments. Lastly, for the execute-
enabled privileged enclave, it should also be permitted to
execute a chunk of CE’s code.

To maintain the enclave’s security property and avoid sig-
nificant conflicts between our prototype design and threat
model, we restrict the Spatial Control permission in read-
enabled grade. First, the write-enabled PE design directly
conflicts with the Confidentiality proof requirement elaborated
in Sec. VI, which caused a great challenge for us in finishing
the formal verification part. In detail, given two PE traces
with one writing data to its CE while another does not,
the adversary can find the difference between them since
the CE contents could be observed by the adversary, thus
corrupting the Confidentiality. Second, the execution-enabled
design directly corrupts the code integrity of PE. An adversary
may inject attack code into a compromised CE. When the

TABLE II: State Transition Set G.

Operation Description
LAUNCH Create an enclave and becomes its parent enclave.
ENTER Enter a children enclave from its entry point and execute.
PAUSE Mark the current enclave as stopped. Back to its parent enclave.
RESUME Resume execution of a children enclave from the stop point.

Unmark stopped state of the enclave.
EXIT Mark the current enclave as exited. Back to its parent enclave.
DESTROY Destroy a children enclave.
INSPECT† Do memory or context inspection on a children enclave.
COMPUTE Do LOAD, STORE, and EXECUTE as a program.
1 † symbol indicates newly introduced interfaces while other interfaces are

modified to support PALANTÍR design.
2 COMPUTE operation simulates the instruction execution in process executables.

malicious CE code is executed by its victim PE, the whole
PE might be hijacked and compromised. To solve this, we
need a code verifier to verify any untrusted to-be-executed
code in CE, like the eBPF [10] verifier in the Linux kernel.
Taking a step back, although code verifiers are supported by
mathematical proofs [21], [27], [45], their implementations
are suffered from security vulnerabilities. For instance, CVE-
2021-31440 [3] is a famous verifier-related vulnerability in
which the attacker exploits the bound checking bug inside the
original code of the eBPF verifier and bypasses it to inject
malicious eBPF code inside kernel.

Given the security concerns above, we adopt a conserved
read-enabled parent enclave model as shown in the second
row of Table I. To keep good isolation from a parent enclave
and other enclaves that are not created by it, we further restrict
the parent enclave’s read-only range within its own children
enclaves.

Remark. To sum up, we choose the multi-layered privi-
leges (MLP) with a maximum of < λmax privilege layers as
our privilege separation model, with each layer having the
Execution Control and Spatial Control privilege over its next-
lower-layered enclaves.

D. Interface

Enclave programs require interfaces to support our inter-
enclave privilege model discussed in the sections above.
PALANTÍR utilizes explicit operations to facilitate the model,
incorporating both existing primitives for general TEE plat-
forms and newly introduced ones. Below, we detail the in-
terface requirements for each privilege associated with parent
enclave. For a comprehensive summary of these interfaces,
refer to Table II.

Execution Control. Existing TEE platforms [17], [30], [52]
allow privileged software to control the life cycles of enclaves
through six operations: LAUNCH, ENTER, PAUSE, RESUME,
EXIT, and DESTROY. In PALANTÍR, we grant PE these op-
erations over its CE to support the Execution Control feature.
Additionally, we modify the detailed semantics of these oper-
ations to align with parent-enclave relationship requirements
in Sec. IV-C.

5

TABLE III: TAP∞ State Variables.

Symbols Type Description
pc VA The program counter.
regs N → W General Purpose Registers.
Π PA → W The abstract physical memory region.
curr ID Current process eid.
own PA → ID Map from physical address to the enclave that

owns it.
M (ID × VA) → (ACL × PA) Page table mapping from process virtual address

to permission bit and physical address.

C (SET × WAY)

→ (BOOL × TAG)
The abstract cache design with valid bit and tags.

D† ID → META Map from process eid to metadata record.
P† ID → ID Map from process eid to its parent’s eid.
1 † indicates newly proposed or updated state variables in TAP∞.

Spatial Control. To enable the read-enabled permission out-
lined in Table I over CE runtime contents, we introduce
one new enclave operation, INSPECT. The valid targets of
INSPECT for a PE are limited to its children only.

Multi-Layered Privileges. MLP enables multiple layers of
parent enclave, requiring semantic support at the enclave cre-
ation stage. Therefore, the only operation modified to support
the MLP design is the LAUNCH, which is adjusted to allow a
PE to create a new CE that could potentially serve as a PE in
the future.

The subsequent sections discuss our formal model and
interfaces.

V. FORMAL MODEL

We first give an overview of our TAP∞ formal model in
Sec. V-A and then provide detailed specifications in Sec. V-B.

A. Formal Model Overview

1) Platform and Process State: An abstract enclave ex-
ecution platform is one transition system TS = ⟨S, I0,⇝⟩
that represents the whole platform during the life of a user’s
enclave. S is the set of all TS’ states σ. The platform always
starts from an initial state σ0 ∈ I0, in which I0 is the set of
all legal initial states, and performs each state transition by
applying a transition function⇝⊂ S×S. Furthermore, the set
of all possible execution traces of the transition system TS in
TAP∞ is denoted as TRACE(TS) ⊂ Sω , which means all
legal transition sequences. Almost all these symbols are also
widely adopted by TAP [52] and TAPC [34].

Given the symbols above, we can derive the formal format
of an enclave platform. For each possible execution trace π, we
have ∀π = ⟨σ0...σn...⟩ ∈ TRACE(TS). ∀i ∈ N. σi ∈ S and
⟨σi, σi+1⟩ ∈⇝. For each transition, the current state will take
an operation from operation set G in Table II. Detailed state
transition specification refers to Appendix A. For the initial
state of an enclave e, we use inite(σ) : S → BOOL to denote
whether state σ includes the initial state of the launched e.
Besides, we use several symbols interchangeably to simplify
expressions. For process execution trace π, π⟨i⟩ ≡ σi. Next,
we describe state variables and process metadata fields for
defining interfaces and proving security guarantees.

TABLE IV: Records of TAP∞ Process Metadata META.

Symbols Type Description
DEP VA The enclave’s entrypoint.
DAM VA → PA The enclave’s virtual address map.
DAP VA → ACL The enclave’s virtual address permissions (read/write/execute).
DEV VA → BOOL Set of private virtual addresses.
Dpc VA The enclave’s saved program counter.
Dregs N → W The enclave’s saved registers.
Dpaused BOOL Whether the enclave is paused.
Dprivil† BOOL Whether the enclave is privileged.
Dparent† ID The enclave’s parent enclave.
1 † indicates additional records added to support multi-layered privileges (MLP).

2) TAP∞ State Variables: For reference, all state variables
in our TAP∞ model are listed in the Table III. For conve-
nience, we adopt original symbols from TAP. Particularly, We
use v : T to denote that variable v ∈ V has type T and
L → R to denote the type of a map with index type L and
value type R. The symbols pc : VA, regs : N → W, and
Π : PA → W are abstractions of program counters, registers,
and memory with usual meanings. To be exact, VA and PA
are fixed length bit vectors representing virtual address and
physical address respectively, and W is word, which is also a
fixed length bit vector as the minimal data unit. By maintaining
a map from each physical address to a process id in the id set
ID = {ei |i ∈ N}∪{ps}, the symbol own : PA → ID records
each physical address p’s owner process as own[p]. Notably,
we use ps to represent the untrusted privileged software.

In our TAP∞, we propose two brand-new metadata fields to
reprove SRE. First, to support the parent enclave and MLP, we
add a new P map to record each enclave’s parent relationship.
P[e2] = e1 means e1 has successfully performed LAUNCH
(e2) once before and e1 became the parent of e2. Second, we
introduce D : ID → META as a map from each process id
to its metadata typed META to describe its comprehensive
runtime information. Notably, the D record can represent not
only the state of enclaves but also that of the adversarial
privileged software because the ID set includes privileged
software (ps) and other compromised enclaves. The detailed
fields of record type META are listed in Table IV.

In the records of META, DAM
e is frequently used in our

proof to represent the abstract page table of e. And the DEV
e is

used to mark each virtual address v is exclusively owned by e
or shared with others. Note that we use DEV

e as an equivalent
abbreviation of D[e].DEV here. For more abbreviation details,
refer to Sec. V-A3.

3) Process Metadata Variables: To support MLP and par-
ent enclave, we introduce two metadata fields in the process’s
record D metadata. The first is Dprivil : BOOL, which is
True if the record D’s owner process e has the privileges in
Sec. IV-A and False otherwise. The second field is Dparent :
ID, whose value is the id of its parent enclave and should be
synchronized with the result of global metadata P[e] for each
enclave e ∈ ID.

To simplify our equation, we ignore state symbols when we
access TAP∞ state variables if only one state symbol (e.g. σ)
occurs in an equation. That is

6

TABLE V: Assistant Notations and Functions in TAP∞.

Symbols Type Description
shared PA → BOOL Whether the physical address is shared.
active ID → BOOL Whether the enclave is executable.
init S → BOOL Whether the transition state represents

the enclave’s initial state.
obs S → META The process information that can be

observed by the privileged software.
ancestor

(
(ID → ID)× ID×
({0} ∪ Nλ)

)
→ ID

Calculate the k-distant ancestor of any
enclave.

valid memory

layout

ID → BOOL Whether the enclave’s memory layout
is ready for LAUNCH.

layer depth
(
(ID → ID)× ID

)
→ N

Calculate the number of privilege layers
from an enclave to its root PE.

∀σ. ps = σ.curr ⇐⇒ ∀σ. ps = curr

Based on the abbreviation above, we next simplify nested
member accessing operation on the process metadata D. For
example, in all equations with only one state symbol (e.g. σ),
we have

σ.D[e] ⇐⇒ D[e] ⇐⇒ De

and
σ.D[e].Dfoo ⇐⇒ De.Dfoo ⇐⇒ Dfoo

e

All equations follow these abbreviations in our paper.
4) Enclave Inputs and Outputs: For input and output for

target enclave e, we follow TAP to use Ie(σ) and Oe(σ)
to represent enclave e’s input and output contents under
current model state σ, respectively. Ie includes arguments
of the transition operation op ∈ G and any memory region
outside of e that is reachable for e excluding its own CE
contents, if exist. And Oe includes the output of enclave e
accessible for other enclaves and adversary OS under current
state σ. Notably, we assume sanitized Ie with help from
orthogonal toolchains [25], [62] to eliminate potential code-
pattern vulnerability exploitations.

5) Formal Adversary Model: To model an adversary with
privileged software in our threat model, we use ps ∈ ID to
denote the privileged software, such as an OS or hypervisor,
which the adversary directly controls. As a privileged pro-
cess, it has the permission to LAUNCH any typed enclaves
and ENTER them. Moreover, the untrusted adversaries have
exclusive states that the enclave cannot access, such as other
compromised enclaves or hypervisor private memory regions.
For a target enclave e, the exclusive states of an adversary are
denoted as Ae(σ) : S → META, which is a mapping from
current transition system TS’s state σ ∈ S to the adversarial
record D ∈ META. Similar with Ae(σ), Ee(σ) : S → META
is denoted as the enclave’s private states D ∈ META under
current TS state σ ∈ S.

B. Interface Specifications

This section elaborates on the formal interface specifications
of parent enclaves, as proposed in Sec. IV, distinguishing
PALANTÍR and TAP∞ from previous work. It specifically de-
scribes the prerequisite conditions for each enclave operation

listed in Table II, which must be met by the transition system
TS before their execution. Additionally, we employ several
assistant symbols and abstract functions to enhance the clarity
of the specifications and theorems, detailed in Table V.

1) Execution Control and Multi-Layered Privileges:
To achieve Execution Control and Multi-Layered Privi-
leges (MLP), we revised the semantics of all existing enclave
operations, as detailed in Sec. IV-D.

Initially, we modified the LAUNCH to allow any PE to create
its own CEs. When an enclave calls an operation in G, a list of
parameters will be filled and passed to the platform, including
enclave ID, address mapping, exclusive memory region, etc.
Specifically, we added a δ parameter to denote whether the
to-be-created enclave is privileged (PE) or not. When the
transition system TS on state σ calls the LAUNCH(eid, . . . , δ)
with target created enclave id as eid and privileged tag as δ,
several pre-conditions must be held to prevent malicious usage
of LAUNCH, as discussed below.

First, the target to-be-created enclave eid should not be
in-use, namely

(
¬active(eid)

)
. Also, the target eid must

have an appropriate memory layout, with private data
strictly protected from adversarial access, as depicted by
valid memory layout(eid). To retrofit Execution Control,
we allowed not only adversary

(
curr = ps

)
but also priv-

ileged parent enclaves
(
Dprivil

curr

)
to create enclaves. Following

the MLP constraints in Sec. IV-C1, the maximum number of
privilege layers cannot exceed the upper-bound λmax, which is
also defined in Sec. IV-C1. Consequently, the MLP constraint
of LAUNCH should be

(
(layer depth(P, eid) = λmax) ⇒

¬δ
)
. Finally, the comprehensive form of the pre-condition for

LAUNCH is formally presented as follows:

(¬active(eid)) ∧ valid memory layout(eid) ∧ (1)(
(curr = ps) ∨ (Dprivil

curr ⇒ (layer depth(P, eid) = λmax) ⇒ ¬δ)
)

We update DESTROY semantics to prevent the adversary
from directly destroying in-use PEs, thus avoiding triggering
an inactive-parent situation in a running CE has a destroyed
PE as its parent. In other words, a PE can be destroyed only
if it all of its CEs has finished execution and exited normally,
namely

(
∀e ∈ ID. active(e) ⇒ P[e] ̸= eid

)
. The rewritten

pre-condition requirement for DESTROY(eid) is below.

active(eid) ∧
(
P[eid] = curr

)
∧(

∀e ∈ ID. active(e) =⇒ P[e] ̸= eid
)

Considering PE’s features, we also put constraints on
ENTER and EXIT. By our definition, after EXIT, the execu-
tion trace will return to curr’s parent enclave, while EXIT
called by adversarial PS does nothing. The RESUME(eid)
follows similar semantics with ENTER: switches execution
context to eid and additionally marks eid as non-stopped. Con-
versely, the PAUSE(eid) operation mirrors EXIT by switching
execution context out of eid and additionally marking eid as
stopped. Given the semantic similarity above, we don’t make
duplicated elaborations on them.

7

Fig. 4: Proving Integrity in TAP∞. Here, ≈ X denotes that
the symbol variable X of two state machines is equal after
the same steps. For example, ≈ E on state σ1, σ2 means the
enclave-related states are equivalent, denoted as Ee1(σ1) =
Ee2(σ2). Blue-colored symbols indicate conditions that the
proof provides to systems, like I for inputs. Green-colored
symbols indicate constraints that the system must obligate,
like O for adversary-observable outputs and E for enclave
states. Adversarial operations A ∈⇝ are marked red.

Following the design in Sec. IV-D, the constraint of
ENTER(eid) is shown below, which means any adversary or
PE can only ENTER into its own CE.

active(eid) ∧
(
P[eid] = curr

)
∧

(
curr = ps ∨ Dprivil

curr

)
2) Spatial Control: The Spatial Control feature is achieved

by adding a new INSPECT operation to PE. We give the
specification of INSPECT(eid, v) as below, in which eid ∈ ID
means the to-be-inspected CE and v ∈ VA means the
inspected virtual address.

active(eid) ∧
(
P[eid] = curr

)
∧ Dprivil

curr ∧(
∃p ∈ PA.

(
DAM

eid [v] = p
)
∧
(
own[p] = ps ∨ own(p) = eid

))
In the equation above, DAM

eid
[v] = p ensures the v is properly

mapped by eid’s page table. And
(
own(p) = ps ∨ own(p) =

eid
)

ensures the target inspection address is either a shared
memory region represented by own(p) = ps or is an exclusive
region for target enclave eid, which is a must for preventing
malicious PE’s out-of-range INSPECT. In TAP∞, the thread
context of eid is also included in the INSPECT scope.

VI. FORMAL GUARANTEES

To recapitulate, one of our primary security goals is to prove
our MLP that applied to an enclave platform still maintains
the Secure-Remote-Execution (SRE) property. To achieve this,
we reinterpret the SRE property on TAP∞ and describe the
challenges of reproving the SRE property in Sec. VI-A. We
contribute new theorem invariants in Sec. VI-B to address
these challenges and complete the proof 1 .

A. Secure Remote Execution Guarantees

According to the Decomposition Lemma by Subra-
manyan et al. [52], it’s sufficient to prove the triad of Secure
Measurement, Integrity, and Confidentiality to hold the Secure
Remote Execution (SRE) on TAP∞.

1Artifact of Formal Verification: https://github.com/arxgy/TAP-lambda

1) Secure Measurement: The enclave platforms must mea-
sure the target enclave to ensure its authenticity and state
integrity before running it. We divide the measurement-related
property into two different but related parts. The first part is
stated as Eq. 2, meaning any two enclaves’ initial states σ1 and
σ2 are the same if and only if the enclaves’ measurements are
equal. The initial states are computed to the measurement µ
when LAUNCH the enclave.

∀σ1, σ2 ∈ S.
(
init(Ee1(σ1)) ∧ init(Ee2(σ2))

)
=⇒ (2)(

µ(e1) = µ(e2) ⇐⇒ Ee1(σ1) = Ee2(σ2)
)

The second part is that if two enclaves e1 and e2 have the same
initial states from Eq. 2, they produce equivalent execution
trace deterministically given equivalent input sequences. This
property is also referred to as the Execution Determinism
property, which is formalized as Eq. 3. It claims that given
these assumptions, the target enclave will generate the same
enclave private state Ee and the same output Oe after each
atomic operation step in G.

∀π1, π2 ∈ TRACE(TS). (3)(
Ee1(π

⟨0⟩
1) = Ee2(π

⟨0⟩
2) ∧

∀i ∈ N. π⟨i⟩
1 .curr = e1 ⇐⇒ π

⟨i⟩
2 .curr = e2 ∧

∀i ∈ N. π⟨i⟩
1 .curr = e1 ⇒ Ie1(π

⟨i⟩
1) = Ie2(π

⟨i⟩
2)

)
=⇒(

∀i ∈ N. Ee1(π
⟨i⟩
1) = Ee2(π

⟨i⟩
2) ∧Oe1(π

⟨i⟩
1) = Oe2(π

⟨i⟩
2)

)
For the secure boot stage of enclaves, the launch stage of

root PEs is like legacy enclaves. During the launch stage of
a CE e, its PE’s measurement µP[e] ought to be involved in
µe such that the CE will only be launched and owned by the
authenticated PE.

2) Integrity: As the second SRE property, Integrity ensures
that the execution trace of the enclave in the presence of
an adversary is entirely identical to the execution of the
enclave program when the attacker is absent, which could
be formalized by Eq. 4. In other words, the only approach
to control the enclave’s control flows and internal states is
to control input sequences. A graphical demonstration of
Integrity is presented in Fig. 4.

∀π1, π2 ∈ TRACE(TS). (4)(
Ee(π

⟨0⟩
1) = Ee(π

⟨0⟩
2) ∧

∀i ∈ N. π⟨i⟩
1 .curr = e ⇐⇒ π

⟨i⟩
2 .curr = e ∧

∀i ∈ N. π⟨i⟩
1 .curr = e ⇒ Ie(π

⟨i⟩
1) = Ie(π

⟨i⟩
2)

)
=⇒(

∀i ∈ N. Ee(π
⟨i⟩
1) = Ee(π

⟨i⟩
2) ∧Oe(π

⟨i⟩
1) = Oe(π

⟨i⟩
2)

)
3) Confidentiality: As the last property, Confidentiality

states that given the same enclave program holding different
secrets, the adversary A cannot distinguish e1 and e2 and
learn nothing but the information provided by the observation
function obs. Thus for adversary A in step i, it receives
same input Ie1(σi) = Ie2(σi) and generates same states
Ae1(π

⟨i+1⟩
e1) = Ae2(π

⟨i+1⟩
e1). Same with the assumption in

8

Integrity, the adversary can combine any possible machine
instructions to perform arbitrary attacks. The formal format
of Confidentiality is presented in Eq. 5 below.

∀π1, π2 ∈ TRACE(TS). (5)(
Ae1(π

⟨0⟩
1) = Ae2(π

⟨0⟩
2) ∧

∀i ∈ N. π⟨i⟩
1 .curr = π

⟨i⟩
2 .curr ∧ IP (π

⟨i⟩
1) = IP (π

⟨i⟩
2) ∧

∀i ∈ N. π⟨i⟩
1 .curr = e ⇒ obs(π

⟨i⟩
1) = obs(π

⟨i⟩
2)

)
=⇒(

∀i ∈ N. Ae1(π
⟨i⟩
1) = Ae2(π

⟨i⟩
2)

)
The challenges in TAP∞. The challenge of proving SRE
in TAP∞ resides in the model complexity. As shown in
Sec. IV-C1, the TAP∞ model complexity, O(nkλmax

), has a
double-exponential explosion over that of the original TAP
model, Ω(nk), in which n stands for the maximum process
amount the privileged software and parent enclaves can have,
and k for the solver-specific parameter.

This challenge arises due to the introduction of the parent-
children relationships and multi-layered privileges, signifi-
cantly increasing the number of valid operations and reachable
transition states. An illustrative comparison of the model
complexity between TAP∞ and previous works resides in
Fig. 3c. Compared with the non-privileged TAP model in
Fig. 3a, the execution flows of TS in TAP∞ not only in-
clude legacy PS-E but also PE-CEs. For example, in proving
the Integrity of TAP∞ (Fig. 4), the to-be-verified PE, eid,
can create CEs and utilize ENTER to switch the execution
contexts into theirs. Similarly, a malicious PE can enter its
CEs, which are not trusted by our threat model and are also
permitted to perform any malicious operations. Consequently,
the maximum MLP layer λmax significantly affects the model
complexity. The mathematical deduction for the TAP∞ model
complexity refers to Appendix B.

We optimize the SMT solver and formal propositions to
solve the challenges above. Notably, we adopted Relevancy
Propagation [18] in Z3 to accelerate the formal reasoning and
utilized unskolemized [51], yet logically equivalent, propo-
sitions to partially prove the SRE property of TAP∞ with
unlimited MLP layers (∀λ ∈ N+). For more details, refer
to Sec. VIII-A.

B. Theorem Invariants

This section describes the necessary core theorems proposed
to proceed with the formal verification of TAP∞. These
theorems are presented as invariants in the proof procedures
of SRE. By these consistency properties below, we rigorously
follow our PE and MLP prototypes designed in Sec. IV.

1) Parent-Children Relationship Consistency: We first be-
gin with invariants related to newly introduced metadata fields.
Firstly, the adversarial privileged attacker’s parent is itself,
since the OS or hypervisor is launched at boot time, as
the Eq. 6 shows.

∀π ∈ TRACE(TS). ∀i ∈ N.
(
active(ps) ∧ P[ps] = ps

)
(6)

Also, we put constraints on the identities of PEs, that is,
any enclave’s parent must be privileged or be the adversary
(ps), which is illustrated in Eq. 7.

∀π ∈ TRACE(TS). ∀i ∈ N. ∀e ∈ ID. (7)

active(e) =⇒ Dprivil
P[e] ∨

(
P[e] = ps

)
Given the system design choices outlined in Sec. IV, we

defined the constraint on P concerning MLP. To recapitulate,
the number of the multi-layered privileges is capped at λmax,
as formalized in Eq. 8. To show this constraint, we must intro-
duce a scaffold function, ancestor(P : ID → ID, e : ID, k :
{0} ∪ Nλ) : ID, to help us calculate the k-distant ancestor of
any enclave e under any parent-children relationship mapping
P . For example, the 1-distant ancestor of e is its parent,
namely e1 = Dparent

e and the 2-distant ancestor of e is its
grandparent, namely e2 = Dparent

e1 . This constraint is

∀π ∈ TRACE(TS). ∀i ∈ N. ∀e ∈ ID. active(e) ⇒ (8)
(ancestor(P, e, λmax + 1) = ps) ∧
(Dprivil

e ⇒ ancestor(P, e, λmax) = ps)

Notably, this constraint can also be deduced from the seman-
tics of LAUNCH in Eq. 1 and Eq. 7.

2) Exclusive Memory Consistency: To support PE’s
INSPECT operation, we provide a consistency property in
TAP∞ stronger than the TAPC and TAP model proposed
earlier, named after Exclusive Memory Consistency. This con-
sistency property claims the equivalence of own and DEV

should be maintained in all saved metadata records and the
currently running process. It means any physical address p
that is exclusively owned by an enclave ei should be mapped
by virtual address regions of ei only, and any exclusively
protected virtual address v’s mapped physical address p should
be viewed as exclusive that belonging to ei only,

(
∀v ∈

VA. DEV
e [v] ⇔ own[De

AM [v]] = e
)
.

However, in the earlier formal models, TAP and TAPC sup-
port only a one-way satisfaction relationship for each enclave
e: DEV

e [v] ⇒ own(DAM
e [v]) = e. Moreover, this incomplete

consistency between own and DEV was maintained on target
enclave e in the former models but for e only. In our TAP∞

model, we promoted this property to each valid PE and its
valid CEs (if it has any), namely

(
∀e. Dprivil

e ∨ Dprivil
P[e]

)
.

Finally, we give the comprehensive form of the Exclusive
Memory Consistency as Eq. 9 below. Although PE must copy
data to feature recipients, its CE, to ensure Exclusive Memory
Consistency, the copy overhead of it is negligible.

∀π ∈ TRACE(TS). ∀i ∈ N. ∀e ∈ ID. (9)(
active(e) ∧

(
Dprivil

e ∨ Dprivil
P[e]

))
=⇒(

∀v ∈ VA. DEV
e [v] ⇐⇒ own[DAM

e [v]] = e
)

Since other CEs might be compromised, the adversary also
indirectly controls them. So the memory consistency also
satisfies

9

∀p ∈ PA. ∀v ∈ VA. ∀e ∈ ID. shared(p) =⇒(
own[p] = ps ∧ (DAM

e [v] = p) ⇐⇒ ¬DEV
e [v]

)
In brief, the owner of a shared memory (i.e. shared(p), p ∈
PA) should be the privileged adversary ps. If a virtual address
v ∈ VA of enclave e is mapped to p, then v should not be
considered to be exclusively owned by e.

VII. IMPLEMENTATION IN RISC-V PENGLAI

To demonstrate the feasibility of PALANTÍR, we imple-
mented it2 on the PENGLAI open-source enclave platform [23],
which is based on RISC-V processors. In PENGLAI, all
enclave-related operations are managed by a high-privileged,
lightweight firmware known as secure monitor, ensuring ef-
fective enclave management and robust security guarantees.
The PALANTÍR implementation complies with the secu-
rity guarantees in Sec. VI in both interface-level (Sec. V-B)
and theorem invariants (Sec. VI-B). For the interface-level
alignments, we have updated the interfaces of parent en-
claves in PENGLAI, revising operations such as LAUNCH,
ENTER, EXIT, and DESTROY, by the specifications detailed
in Table II and Sec. V-B. Additionally, we introduced extra
operations, PAUSE, RESUME, and INSPECT, following our
outlined specifications in the same section.

To uphold the theorem invariants in Sec. VI-B, we first
ensure the Parent-Children Relationship Consistency through
a management module within the secure monitor. This mod-
ule governs the inter-enclave parent-children relationships ac-
cording to the specifications outlined in Sec. VI-B1. Sec-
ondly, Exclusive Memory Consistency is naturally achieved
in our implementation without any code modification due
to PENGLAI’s use of the RISC-V Trapped Virtual Memory
(TVM) feature. TVM enables the secure monitor to unmap
a contiguous physical memory region from the guest OS,
allowing modifications to the OS’s page table. This prevents
the OS from accessing the memory regions secure monitor
seeks to protect. Consequently, PENGLAI does not allocate a
single exclusive physical memory region to two distinct active
enclaves simultaneously. Further discussion on the security
guarantees refers to Sec. X.

Implementation Breakdown in LoC. Although PALANTÍR
introduces privilege layers to deploy features, there is still
a need to drop to privileged software to support essential
primitives for PE and MLP. We implemented the foundational
functions of PALANTÍR in the secure monitor of PENGLAI
platform. From the platform perspective, the TCB growth
introduced by PALANTÍR is 3,372 LoC only. In the users’
view, the TCB growth size equals the 3,372 LoC above plus
the runtime TCB and features PEs actually in use. Table VII
gives a detailed implementation breakdown.

2Artifact of Implementation: https://github.com/arxgy/Penglai-Enclave-
Privileged

TABLE VI: Formal verification complexity of TAP∞ model.
Here #pn denotes the number of to-be-verified procedures, #fn
denotes the number of functions, #an denotes the number of
annotations, and #ln denotes the lines of codes (LoC).

Model/Proof Model Details Verification Time (s)#pr #fn #an #ln
TAP (λmax ≡ 0)

Integrity† 12 13 145 985 15
Secure Measurement 6 3 100 800 6

Confidentiality† 8 0 200 1388 17
TAP∞ λmax = ∞ λmax = 8

Integrity† 15 14 146 1403 40610 83655
Secure Measurement 9 7 261 1271 ◦ 445

Confidentiality† 8 0 378 2352 6842 57042
1 ◦ indicates the proof is inconclusive and dropped by the SMT solver. Appendix C

provides a proof by induction as a supplement.
2 † indicates the SMT solver adopts Relevancy Propagation.

TABLE VII: PALANTÍR implementation breakdown in LoC.
The miscellaneous section encompasses comments and logs.

Function PALANTÍR
Privileged TCB

Enclave
Runtime TCB

PENGLAI
Driver

Parent Enclave Primitives (Sec. V-B) 1,803 0 991
MLP Management (Sec. VI-B1) 256 0 0
Wrappers for Interfaces (Sec. V-B) 0 718 0
Miscellaneous 1,313 67 60

Total Line of Codes (LoC) 3,372 785 1,051

VIII. EVALUATION

Benchmarks. We evaluate PALANTÍR on four aspects:
• Verification Results: Verification costs of TAP∞ caused

by the newly-introduced MLP primitives. (Sec. VIII-A)
• Start-up Latency: Introducing PE incurs negligible over-

head to the start-up latency of CEs and legacy enclaves.
Also, MLP can significantly reduce start-up latency in inter-
enclave feature sharing. (Sec. VIII-B)

• Computation Overhead: Our MLP design incurs negligi-
ble computation overhead. (Sec. VIII-C)

• Case Study: We provide an end-to-end case study, Hi-
erarchical Deterministic Wallet to show the benefits of
PALANTÍR in porting applications. (Sec. VIII-D)

13 512 1024 4096
16384

65536
131072

Enclave Binary File Size (KiB)

106

107

108

109

1010

1011

St
ar

t-
up

 L
at

en
cy

 (c
yc

le
s) Penglai ATTEST

Penglai CREATE
Penglai Other
Extra Latency

Palantir ATTEST
Palantir CREATE
Palantir Other

0

50

100

150

200

250

E
xt

ra
 L

at
en

cy
 (%

)

(a) Start-up Latency:
Micro-benchmark Breakdown

aes
dhrystone norx

primes qsort
sha512

Sub-task

0

1

2

3

4

5

6

E
xe

cu
tio

n
Ti

m
e

(1
e1

0
cy

cl
es

)

Linux Native
Penglai-TVM
Palantir

29.5%
3.0%

20.5%

5.9%

2.8%

13.7%

0.5%
0.9%

3.2%

2.0%

1.2%

3.0%

(b) Computation Overhead:
RV8 Benchmark

Fig. 5: Evaluation on PALANTÍR implementation. In Fig. 5a,
the Other cost is caused by inter-enclave communications.
In Fig. 5b, compared to the original PENGLAI platform, the
average overhead of PALANTÍR is 1.8%.

10

Experimental Setup. All evaluations are performed on a
DELL PowerEdge T550 Tower Server with two Intel® Xeon®

Gold 5318Y CPUs each with 48 cores at 2.10 GHz and 512
GB memory. For the verification of TAP∞, we use Boogie
2.16.0 and Z3 SMT Prover 4.8.7. We developed and evaluated
our implementation on the PENGLAI Enclave Platform based
on commit 3c0c81f.

A. Verification Results

This section discusses our models and machine-checked
proofs. We adopt BoogieIVL [14], [20] as our formal model-
building language, which is designed to be a middle part of
the program verifier and usually performs as an intermediate
verification language between high-level languages like C or
C#, and low-level SMT logic clauses. Boogie utilizes ACSL-
style annotations [15] to specify verification conditions in the
formal model, including pre-/post-conditions, loop invariants,
etc. Then, the formal model and verification conditions will
be compiled into SMTv2 commands and solved by the Z3
SMT solver [19]. For more details in the Boogie toolchain
and TAP∞ formal system, refer to Appendix A.

Table VI shows the verification result of TAP∞. We suc-
cessfully proved the SRE property of TAP∞ with unlimited
privileged layers λmax = ∞. It required 2,711 lines of code
(LoC) in BoogieIVL to incrementally construct the TAP∞

model, support PE and MLP, and complete proofs for all
three SRE properties: Integrity, Secure Measurement, and
Confidentiality. This effort took three person-months working
approximately 30 hours a week to finish. In detail, our formal
verification work can be illustrated by the great verification
time gap between our TAP∞ and the origin TAP in Table VI.
Compared with TAP, our verification time bloated to 3∼4
orders of magnitude across all properties. The significant
discrepancy arises from increasing model complexity caused
by the MLP, as previously discussed in Sec. VI.

As depicted in Table VI, we successfully verified the Con-
fidentiality and Integrity of any enclave model with unlimited
privilege layers (λmax = ∞). To solve the proof complexity
challenge, We first employed an optimization methodology
called Relevancy Propagation [18], which significantly expe-
dited our proof by a factor of at least 200∼300x. This perfor-
mance improvement is because the Z3 SMT Solver navigates a
vast set of constraints during verification, constantly maintain-
ing and updating this set through new assignments. Each new
assignment can trigger further constraint propagation. With
Relevancy Propagation activated, the theorem prover identifies
and tracks only the assignments critical to the proof, thereby
significantly reducing unnecessary propagation.

We also utilized de-skolemized [51], yet logically equiv-
alent, substitutes of specification in Sec. V-B to solve the
state explosion in TAP∞ caused by the MLP design. In
mathematical logic, skolemized propositions mean proposi-
tions with uniformed nested quantifiers (e.g. ∀x.∀y.ϕ(x, y)).
Symmetrically, de-skolemized ones are propositions with al-
ternating nested quantifiers (e.g. ∀x.∃y.ϕ(x, y)). Notably, the
SMT solver utilizes heuristics instead of constructive logic to

TABLE VIII: Runtime latency of MLP. Each sub-task in the
RV8 benchmark suite are run inside λ-layered PEs, and the
overhead is compared with the λ = 0 case in percentage (%).

Sub-task \
Privilege Level (λ) 1 2 3 4 5 6 7 Avg.

AES 0.407 0.892 0.842 1.472 1.308 1.338 1.042 0.090
dhrystone 0.561 0.184 -0.070 0.190 0.051 0.878 0.326 0.860
norx 1.085 1.240 0.863 0.831 0.425 1.622 1.064 1.544
primes 1.349 1.496 1.351 1.558 1.362 1.954 2.007 1.752
qsort 0.468 0.613 0.452 0.808 0.826 1.110 0.875 0.736
sha512 0.118 0.279 0.644 2.887 3.627 1.178 0.206 1.276

Avg. 0.406 0.892 0.842 1.472 1.308 1.338 1.042 1.043

 Firmware
Feature

Extension

E-App 1

Enclave

Runtime

Feature

Library

E-App 2

Feature

Library

E-App N

Feature

Library
…

(a) Monolithic Sharing Pattern

 Firmware
PALANTÍR

Extension

E-App 1

Enclave

Runtime

Feature

Runtime

E-App 2

Feature

Runtime

E-App N

Feature

Runtime

E-App 1 …E-App 2 E-App N

Parent

 Enclave

Feature

Extension

(b) PALANTÍR Sharing Pattern

Fig. 6: Real-world feature sharing. Gray-colored boxes indi-
cate duplicated feature runtime during feature sharing. Green-
colored boxes indicate newly introduced TCB for E-Apps.

check satisfiability, leading to an inconclusive proof of Secure
Measurement when λ becomes large. Consequently, we give
a manual proof of it in Appendix C. In brief, the proof is
constructed and finished by inducting the execution state of
transition systems.

B. Start-up Latency

We measure the most crucial and costly part of the enclave
usage scenario in the cloud: the creation and attestation stage.

Micro-benchmark. We first simulate a scenario in which a
remote user U deploys its enclave e to a remote platform.
Then we compare the time cost between deploying the non-
privileged e in the original PENGLAI platform or by our
PALANTÍR, in which we launch a PE first and let the PE create
e then. We evaluate enclaves with different binary file sizes and
analyze the inner overhead proportions inside the procedure.

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

of Enclave

0

128

256

512

M
em

or
y

Fo
ot

pr
in

t
(M

iB
)

9.17

384.84

9.27

Monolithic
Server Enclave
Palantir

(a) Memory Footprint

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

of Enclave

0

2

4

6

8

St
ar

tu
p

L
at

en
cy

(1
e1

0
cy

cl
e)

Monolithic/Palantir
Server Enclave/Palantir
Monolithic
Server Enclave
Palantir

0

2

4

6

8
L

at
en

cy
 R

at
io

(b) Start-up Latency

Fig. 7: Evaluation of the real-world feature sharing. The
PALANTÍR-based feature sharing pattern enables nearly
constant-size memory footprint regarding CE number and
1.2∼3.5x start-up acceleration for large-scale enclave scenar-
ios, compared with the native feature extension pattern.

11

Given our prototype implementation, the cost of launching e
on PALANTÍR will be more significant since we have a 2-stage
start-up procedure.

Observation: According to the result in Fig. 5a, when the
CE’s binary size < 1MiB, the overhead of launching CE by
PALANTÍR is several times higher than on original platforms.
However, when the binary size increases, the overhead gap
tends to be negligible. This is mainly caused by the extra
creating time of PE, as we must launch PE first to further
launch e as a CE in PALANTÍR. Although the binary size
of e varies, the agent PE program is fixed. So when e size
surges, the cost proportion of creating the PE shrinks and
becomes negligible (< 10%). Besides, in PENGLAI platform,
the critical overhead lies in LAUNCH since the secure monitor
will compute the measurement of e in creation instead of
the attestation stage, which also fits the proportion shown in
Fig. 5a.

Real-World Feature Sharing. The multi-layered privileges
design in PALANTÍR effectively reduces start-up latency for
multiple enclave applications that utilize common services.
As shown in Fig. 6a, the traditional monolithic feature ex-
tension patterns, such as Architecture-Level Extension and
Intra-Enclave Compartmentalization, require library loading
for each enclave application, thereby introducing unnecessary
duplication of libraries. In contrast, PALANTÍR eliminates
this redundancy by placing features in a PE. Then enclave
applications, as its CEs, can share the features, as illustrated
in Fig. 6b. Our evaluation confirms that such feature sharing
can reduce enclave applications’ memory footprint and start-
up overhead.

Fig. 7 shows the overhead comparison of PALANTÍR with
other feature extension patterns. We support the applica-
tion enclaves with the Platform Security Architecture (PSA)
storage feature by importing WolfSSL [2] and mbedtls [1]
libraries into PALANTÍR and parent enclaves. The combined
memory footprint of the WolfSSL and Mbed TLS libraries is
approximately 1 MiB, whereas the application code accounts
for about 100 KiB. In the baseline PENGLAI configuration,
we demonstrate two setups. The first run LAUNCH enclaves
containing the PSA feature and application codes are denoted
as the monolithic pattern. The second configuration employs
server enclaves, as proposed by PENGLAI, which houses the
PSA feature. The legacy enclaves can send IPC requests
to registered server enclaves to acquire services, denoted as
server enclave pattern. On the other hand, the PALANTÍR setup
always creates a PE to house the PSA service, and the PE
governs multiple CEs for sharing.

Observation: Fig. 7a illustrates that, unlike the monolithic
pattern’s linearly increasing memory footprint, our PALANTÍR
configuration achieves a nearly constant memory footprint
overhead as the number of CEs increases. This efficiency stems
from eliminating redundant feature codes, which produce a
relatively small code size compared to the monolithic pattern.
Fig. 7b demonstrates the runtime effectiveness of PALANTÍR
by evaluating the start-up latency of application CEs. The

TABLE IX: One-time setup overhead of Hierarchical Deter-
ministic Wallet on PALANTÍR.

Hierarchy Component Root Parent Enclave Children Enclave

Overhead (cycles) 4.9× 108 2.7× 108

speedup over the monolithic pattern (3∼4x) is caused by the
large gap between enclave binary file sizes. The speedup over
the server enclave pattern (1.5∼3x) can be attributed to the
performance gap between the details in implementing inter-
enclave communications.

C. Computation Overhead

The Execution Control privilege granted to the parent en-
clave allows it to manage the scheduling of its CEs, thereby
introducing inevitable context switch overheads to the original
PENGLAI platform. To quantify the computational overhead
imposed by the Execution Delegation relative to the native
PENGLAI TEE platform, we utilized the CPU-intensive RV8
benchmark suite [12] to assess the overall execution overhead.
We ported RV8 to PENGLAI and executed the RV8 applica-
tions as native Linux programs, as legacy PENGLAI enclaves,
and as CEs controlled by a 1-layered PE, respectively. We
then compared the total runtime costs across these different
execution environments. As shown in Fig. 5b, the runtime
overhead caused by our PALANTÍR implementation is < 3.3%
in all cases and 1.8% on average, nearly negligible.

Multi-Layered Privileges Latency. PALANTÍR introduces
multi-layered privileges (MLP) in Sec. IV-B and Sec. VII.
Nested PEs will introduce extra control delegations since the
modified secure monitor in PALANTÍR will delegate software
interruptions or requests from a lower-layered PE to the
higher-layered PE. To exclude irrelative interference from
other enclaves, we allow each PE to possess only one CE
to form an ownership chain, with the lowest-layered non-
privileged CE c housing computations. We evaluated the
overhead of MLP based on the RV8 above benchmark, as
shown in Table VIII. Given results in Sec. VIII-A, we only
consider machine-checkable layers (λmax = 8).

As depicted in Table VIII, MLP does not impose significant
overheads to PENGLAI. With 16 repetitions of each sub-task,
the MLP introduces always ≈ 1% latencies. This negligible
latency is primarily attributed to the execution flow predom-
inantly switching between the lowest-layered CE c, which
executes each sub-task, and its PE P[c], resulting in negligible
differences compared to the optimal λmax = 1 case.

D. Case Study: Hierarchical Deterministic Wallet

To underscore the necessity of introducing multi-layered
privilege separation in TEEs and to demonstrate the feasibility
of our implementation in delivering features, we present an
end-to-end example, Hierarchical Deterministic Wallet.

The Hierarchical Deterministic Wallet (HDW) is a cryp-
tographic wallet that leverages a hierarchical structure to
derive public-private key pairs from an initial master key

12

Children Enclave X

 Path: m/0

Root Parent Enclave

 Path: m

Root

Seed

Index: 0 Index: N

Children Enclave Z

Path: m/0/N

…

Children Enclave Y

 Path: m/1

MnemonicSalt

HMAC-SHA512

HMAC-SHA512

HMAC-SHA512

𝑆𝑘/𝑠𝑘/𝑠𝑘
′ : Private Keys

𝑃𝑘/𝑝𝑘/𝑝𝑘
′ : Public Keys

𝐶𝑘/𝑐𝑘/𝑐𝑘
′ : Chain Codes

 : Derivation Relationship

Index: 1

Fig. 8: Case study: Hierarchical Deterministic Wallet. Green-
colored boxes indicate privilege layers. Deeper shades repre-
sent higher privilege levels.

TABLE X: Runtime performance of Hierarchical Determinis-
tic Wallet case. The overhead is compared with the wallet im-
plementation on a PENGLAI legacy enclave in percentage (%).
The performance on the legacy enclave is taken on average for
the path length.

Scheme \
#Derivation Path Length

1 2 4 8 16
PALANTÍR

Avg. (%)
Legacy Enclave

Avg. (cycles)

Master Key Generation 0.57 0.33 0.44 1.57 0.97 0.78 1.96× 107

Child Key Derivation 7.03 6.34 9.22 8.43 9.68 8.14 2.01× 107

Child Key Sign 0.84 1.28 3.21 1.70 1.76 1.76 2.14× 107

Child Key Verify 1.14 2.11 3.55 4.98 3.60 3.08 1.25× 108

pair for each cryptocurrency transaction. Initially proposed in
BIP32 (Bitcoin Improvement Proposal) [59], HDW has since
been adopted as a standard within the Bitcoin community.
HDW is characterized by three primary features: (1) deter-
ministic generation: all keys in a wallet are deterministically
generated, ensuring a consistent and reproducible key genera-
tion process. (2) master private key: a wallet owner can derive
public-private key pairs from a master key pair. The master key
pair should be generated from the seed input. (3) hierarchy: the
derived key pairs can function as master key pairs, enabling
the recursive generation of further derived keys.

To support HDW, we integrated open-sourced libraries and
cryptographic algorithms into PALANTÍR, including libbase58,
secp256k1 elliptic curve, AES/Rijndael algorithm, etc. Addi-
tionally, we implemented the BIP39 [43] specification to facili-
tate the master seed generation process. The seed is generated
using HMAC-SHA512 from a mnemonic and a passphrase
salt. With this setup, HDW functionality can be seamlessly
deployed onto PALANTÍR by utilizing existing cryptography
library APIs and incorporating PAUSE and RESUME for inter-
enclave communications.

Security Analysis. The multi-layered isolation of PALANTÍR
meets the stringent security demand of HDW. As shown in
Fig. 8, the hierarchical key pairs in HDW are distributed
across the enclave layers in PALANTÍR, with each key pair
housed within a distinct enclave. Indeed, the multi-layered
privileges of enclave provide robust protection, safeguarding
each master private key against privacy leakage and attacks

from its potentially compromised child key pairs. In contrast,
in a monolithic design that computes and places the master
keys and child keys in the same process, the lack of hardware-
aided hierarchical isolation leads to potential master private
key leakage [22] once children’s (derived) private keys are
compromised. Moreover, the isomorphism between the parent-
children key pair derivation hierarchy in HDW and the parent-
children enclave hierarchy in PALANTÍR ensures both the
correctness and determinism feature of generated keys.

Overhead. We utilized the existing testbench in the open-
sourced trezor-crypto [4] library to evaluate the performance of
the HDW on PALANTÍR. As mentioned, the profiling program
can be seamlessly integrated into PALANTÍR without crypto-
graphic API modifications. The overhead comprises a one-time
setup phase and periodic key derivation/signing/verifying. The
results in Table IX and X are averaged over 512 runs.

The setup overhead resides in launching multiple hierarchi-
cal enclaves, including one necessary root PE and multiple
CEs as needed. Although the setup overhead scales linearly
with the number of CEs, launching each enclave (Table IX) is
incurred only once.

For runtime performance, we separately evaluated the crypto
schemes of HDW, as depicted in Table X. The performance of
PALANTÍR-based HDW was compared against the monolithic
HDW design on a PENGLAI legacy enclave. To illustrate the
scalability of PALANTÍR hierarchical enclaves, we accessed
runtime performance across multiple levels of key derivation.
In this case, the generated child key pairs (pk, sk) recursively
generate child key pairs (p′k, s

′
k), forming a derivation path.

The result indicates that PALANTÍR efficiently supports HDW
without introducing significant overheads, regardless of the
length of derivation paths. Previous evaluation in Table VIII
also corroborated the scalability of hierarchical enclaves.

Furthermore, we observed that the Child Key Derivation
scheme exposes a slightly higher overhead over others, primar-
ily due to inter-enclave communications triggered by PAUSE
and RESUME. Despite this, the overall impact on performance
remains relatively low (< 5%). This is because the derivation
scheme (≈ 107 cycles) costs an order magnitude smaller than
the sign and verify scheme (≈ 108 cycles). Moreover, each
used key will only be derived exactly once but will be used
for signing and verifying at least once, resulting in the impact
of derivation on the overall performance of less than 10%.

Other Evaluations. The entire HDW library in PALANTÍR
includes 27, 184 LoC in C imported from trezor-crypto [4].
It only takes 24 LoC modifications to be integrated into
PALANTÍR SDK as a static library.

Given the programmability of hierarchical PE and MLP,
the benefits of PALANTÍR extend beyond that. Its real-world
advantages lie in the possibilities of what can be implemented
within PEs, giving enclave authors more power.

IX. RELATED WORKS

Formal verification on TEE features. Among works on
feature extension for TEE platforms, Lee et al. [34] introduces

13

Cerberus, an architectural-level memory-sharing extension in-
corporating formal verification to ensure its security.

The PALANTÍR and Cerberus have significant differences
between them. Cerberus primarily focuses on providing a ver-
ified feature, the inter-enclave memory sharing. In comparison,
PALANTÍR operates at a broader scale, offering a verifiable
feature extension framework through multi-layered privilege
separation. This allows users to develop customizable features
tailored to their specific needs rather than limiting them to a
predefined feature extension like Cerberus. For the design part,
PALANTÍR introduces numerous new challenges and tech-
niques. It significantly increases the verification complexity
from TAP’s and TAPC’s Ω(nk) to our TAP∞’s Ω(nkλmax

).
Unlike Cerberus, which only offers static sharing interfaces
to an enclave, PALANTÍR introduces not only read-enabled
Spatial Control but also Execution Control over enclaves, as
elaborated in Sec. V-B. From the functionality aspect, the
formal model of Cerberus is considered a subset of our
TAP∞. Concerning security, PALANTÍR is not securing the
functionality of a specific enclave, but rather any functionality
it provides, including other functionality to be explored.

Privilege separation within TEE. Prior work has been
studied to support privilege protection levels within TEEs.
Nested Enclave [44] provides privilege separation between the
privileged inner-enclaves and non-privileged outer-enclaves to
isolate the untrusted third-party libraries. vTZ [28] supports
multiple secure VMs using the secure world primitive of
ARM TrustZone. AEGIS [53] and CURE [13] offer distinct
security types on the code and data and support multiple secure
execution modes on an application.

Compared with existing works, our PALANTÍR advances
beyond in three key aspects: (1) generality, (2) availability,
and (3) security guarantees. First, the privilege separation
model of PALANTÍR is designed for general enclave platforms,
ensuring it is not constrained by any specific TEE design. At
the same time, all of the existing work is tailored to a particular
enclave platform. Second, PALANTÍR is the first to extend
the inter-enclave privilege separation to a λ-layered model
(λ ≥ 2), marking a significant expansion from the typical
single- or double-layered privilege models prevalent in prior
works. Lastly, PALANTÍR distinguishes itself as the pioneer
in formally verifying the multi-layered inter-enclave privilege
separation model, TAP∞, on generic enclave platforms.

Privilege separation through micro-kernel architecture.
Similar to PALANTÍR, the micro-kernel architecture offers
performant separation between security-critical and less-
privileged system components. Prior research [33] has for-
mally verified a microkernel’s functional correctness and
security properties. However, the key distinction between
PALANTÍR and microkernel architecture lies in their security
models. In the threat model of PALANTÍR, the privileged
software is untrusted; thereby, the security of PEs is still
ensured by hardware isolation and formal verification, even
under a compromised kernel. In other words, the nested en-
claves in PALANTÍR fulfill the data confidentiality and integrity

requirements of services better than micro-kernels in scenarios
of outsourcing storage and computation to untrusted clouds.

X. DISCUSSION

Verification of implementation. As discussed in Sec. II and
Sec. VII, our work proposes a multi-layered privileges model
for general enclave platforms. Consequently, this paper does
not cover code verification of our implementation.

Indeed, any discrepancies between the formal model spec-
ifications and the actual implementation can significantly in-
crease real-world vulnerabilities. As declared in Sec. VII, our
implementation adheres to the security specifications estab-
lished in our TAP∞. Additionally, crucial invariant assump-
tions such as Exclusive Memory Consistency are supported
by the inherent design of the PENGLAI platform. However,
these implementation guarantees alone do not fully ensure the
security principles are flawlessly executed. Binary-level verifi-
cation is still required to assert that the actual implementation
can be effectively refined to stringently meet the proven SRE
security, which could be another line of research.

Capability of feature extension. To migrate existing appli-
cations to PALANTÍR, the developer needs to understand the
semantics of PE primitives listed in Table II. The primitives
are essential when implementing privilege-related features
for inter-enclave management and communications. We have
provided function interfaces as part of the SDK runtime to
facilitate this process, as detailed in Table VII. Developers can
utilize the interfaces to call the PE primitives as e-calls with
structured parameters.

From another perspective, our read-enabled privilege de-
sign, as detailed in Section IV-C3, inherently limits the scope
of future features that our PE framework can support. For
instance, we are currently unable to support write-dependent
features, such as write-enabled shared memory. However, this
extension may conflict with the Confidentiality property. Con-
sequently, further exploration of spatial isolation permissions
is designated as future work.

PALANTÍR on other TEE platforms. As discussed in Sec. II,
PALANTÍR focuses on designing a generic multi-layered en-
clave model independent of platform-specific features. The
generality of PALANTÍR is based on the PE operations in
Table II. For process-based TEEs, deployment can be achieved
by introducing the PE primitives as firmware-level extensions.
For instance, deploying PALANTÍR onto Keystone [35] follows
a similar approach as with PENGLAI: (1) rewriting the secure
monitor and kernel driver to support syscall-level primitives,
and (2) enabling enclave runtime SDK to server as interfaces.
For VM-based TEEs, deployment involves introducing prim-
itives as ISA/hypervisor instructions, with additional modifi-
cations on MMU and para-virtualized I/O. This architecture-
based extension approach has been previously adopted to
support single-layered VM-based TEE partitioning [31], [60]
and nested virtualizations [29].

14

XI. CONCLUSION

In conclusion, we proposed PALANTÍR, a verified multi-
layered privilege model on general enclave platforms. We
introduced the parent-children inter-enclave relationship and
multi-layered privileges (MLP) for secure feature extension
for enclaves. We further provided detailed specifications for
parent enclaves to evaluate the security properties within our
TAP∞ model. We verified that the SRE security guarantee is
rigorously upheld through automated formal verification. We
also implemented the PALANTÍR prototype on the PENGLAI
open-source enclave platform. Lastly, we conducted a case
study to show the security and efficiency benefits of our inter-
enclave privilege layer design.

ACKNOWLEDGMENT

We thank our shepherd as well as the anonymous reviewers
for their insightful comments, which have significantly im-
proved the paper. The work was partially supported by the
National Natural Science Foundation of China under Grant No.
62472281, 62102254, 62325207, 62132013, and 62172271.

REFERENCES

[1] “Mbed TLS.” https://www.trustedfirmware.org/projects/mbed-tls/, 2020.
[2] “Wolfssl embedded SSL/TLS library.” https://www.wolfssl.com/, 2020.
[3] “An incorrect bounds calculation in the linux kernel ebpf ver-

ifier,” https://github.com/bsauce/kernel-exploit-factory/blob/main/CVE-
2021-31440/exp/CVE-2021-31440.c, 2021.

[4] “Trezor-crypto library.” https://github.com/trezor/trezor-crypto/, 2021.
[5] “CVE-2023-26489.” Available from MITRE, CVE-ID CVE-2023-26489

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-26489,
2023.

[6] “CVE-2023-5165.” Available from MITRE, CVE-ID CVE-2023-5165
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-5165, 2023.

[7] “CVE-2023-6345.” Available from MITRE, CVE-ID CVE-2023-6345
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-6345, 2023.

[8] https://www.aliyun.com/, Aliyun.
[9] https://developer.arm.com/ip-products/security-ip/trustzone, Arm Trust-

Zone technology.
[10] https://docs.kernel.org/bpf/verifier.html, eBPF verifier. Linux.
[11] https://cloud.google.com/, Google Cloud.
[12] https://github.com/michaeljclark/rv8-bench., RV8 Benchmark. 2017.
[13] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek,

A.-R. Sadeghi, and E. Stapf, “CURE: A security architecture
with CUstomizable and resilient enclaves,” in 30th USENIX
Security Symposium (USENIX Security 21). USENIX
Association, Aug. 2021, pp. 1073–1090. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity21/presentation/bahmani

[14] M. Barnett, B.-Y. E. Chang, R. DeLIne, B. Jacobs, and R. Leino,
“Boogie: A modular reusable verifier for object-oriented programs,” in
FMCO 2005. Springer Berlin Heidelberg, November 2005.

[15] P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Pre-
vosto, “ACSL: ANSI/ISO C Specification Language,” 2008.

[16] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Steal-
ing Intel Secrets from SGX Enclaves via Speculative Execution,” in
Proceedings of the 2019 IEEE European Symposium on Security and
Privacy, June 2019.

[17] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal
hardware extensions for strong software isolation,” in 25th
USENIX Security Symposium (USENIX Security 16). Austin, TX:
USENIX Association, Aug. 2016, pp. 857–874. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/costan

[18] L. de Moura and N. Bjørner, “Relevancy propagation,” Technical Report
MSR-TR-2007-140, Microsoft Research, Tech. Rep., 2007.

[19] L. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in Pro-
ceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, ser. TACAS’08/ETAPS’08. Berlin, Heidelberg: Springer-
Verlag, 2008, p. 337–340.

[20] R. DeLIne and R. Leino, “Boogiepl: A typed procedural language
for checking object-oriented programs,” Tech. Rep. MSR-TR-2005-70,
March 2005.

[21] A. F. Donaldson, L. Haller, D. Kroening, and P. Rümmer, “Software
verification using k-induction,” in Static Analysis: 18th International
Symposium, SAS 2011, Venice, Italy, September 14-16, 2011. Proceed-
ings 18. Springer, 2011, pp. 351–368.

[22] C.-I. Fan, Y.-F. Tseng, H.-P. Su, R.-H. Hsu, and H. Kikuchi, “Secure
hierarchical bitcoin wallet scheme against privilege escalation attacks,”
International Journal of Information Security, vol. 19, pp. 245–255,
2020.

[23] E. Feng, X. Lu, D. Du, B. Yang, X. Jiang, Y. Xia, B. Zang, and
H. Chen, “Scalable memory protection in the PENGLAI enclave,” in
15th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 21). USENIX Association, Jul. 2021, pp. 275–294.

[24] Y. Fu, E. Bauman, R. Quinonez, and Z. Lin, “SGX-LAPD: Thwarting
controlled side channel attacks via enclave verifiable page faults,”
in Research in Attacks, Intrusions, and Defenses: 20th International
Symposium, RAID 2017, Atlanta, GA, USA, September 18–20, 2017,
Proceedings. Springer, 2017, pp. 357–380.

[25] A. U. S. Gopal, R. Soori, M. Ferdman, and D. Lee, “TAILCHECK:
A lightweight heap overflow detection mechanism with page protection
and tagged pointers,” in 17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 23). Boston, MA: USENIX
Association, Jul. 2023, pp. 535–552.

[26] J. Gu, Z. Hua, Y. Xia, H. Chen, B. Zang, H. Guan, and J. Li, “Secure
Live Migration of SGX Enclaves on Untrusted Cloud,” in 2017 47th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), June 2017, pp. 225–236.

[27] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Commun. ACM, vol. 12, no. 10, p. 576–580, Oct. 1969. [Online].
Available: https://doi.org/10.1145/363235.363259

[28] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and
H. Guan, “vTZ: Virtualizing ARM TrustZone,” in 26th USENIX
Security Symposium (USENIX Security 17). Vancouver, BC:
USENIX Association, Aug. 2017, pp. 541–556. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/hua

[29] Intel, “4th generation intel core vpro processors with intel vmcs
shadowing,” Tech. Rep., 2013, white Paper. [Online]. Available:
http://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/intel-vmcs-shadowing-paper.pdf

[30] Intel, “Intel SGX SDK,” https://github.com/intel/linux-sgx, 2019.
[31] S. Jin, J. Ahn, J. Seol, S. Cha, J. Huh, and S. Maeng, “H-SVM:

Hardware-assisted secure virtual machines under a vulnerable hypervi-
sor,” IEEE Transactions on Computers, vol. 64, no. 10, pp. 2833–2846,
2015.

[32] D. Kaplan, J. Powell, and T. Woller, “AMD SEV-SNP: Strengthening
VM Isolationwith Integrity Protection and More,” White paper, Tech.
Rep., 2020.

[33] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “SeL4: Formal Verification of an OS Kernel,”
in Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, ser. SOSP ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 207–220.

[34] D. Lee, K. Cheang, A. Thomas, C. Lu, P. Gaddamadugu, A. Vahldiek-
Oberwagner, M. Vij, D. Song, S. A. Seshia, and K. Asanovic, “Cerberus:
A formal approach to secure and efficient enclave memory sharing,”
in Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 1871–1885.

[35] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song, “Key-
stone: An open framework for architecting trusted execution envi-
ronments,” in Proceedings of the Fifteenth European Conference on
Computer Systems, ser. EuroSys ’20. New York, NY, USA: Association
for Computing Machinery, 2020.

[36] Z. Lin, Z. Yu, Z. Guo, S. Campanoni, P. Dinda, and X. Xing, “CAMP:
Compiler and allocator-based heap memory protection,” in 33rd

15

USENIX Security Symposium (USENIX Security 24). Philadelphia, PA:
USENIX Association, Aug. 2024, pp. 4015–4032. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity24/presentation/lin-
zhenpeng

[37] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution,” in Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for
Security and Privacy, ser. HASP ’13. New York, NY, USA: Association
for Computing Machinery, 2013.

[38] M. S. Melara, M. J. Freedman, and M. Bowman, “Enclavedom: Privilege
separation for large-TCB applications in trusted execution environ-
ments,” ArXiv, vol. abs/1907.13245, 2019.

[39] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and
F. Piessens, “Plundervolt: Software-based fault injection attacks against
Intel SGX,” in 2020 IEEE Symposium on Security and Privacy (SP),
2020, pp. 1466–1482.

[40] L. Nelson, J. Bornholt, R. Gu, A. Baumann, E. Torlak, and X. Wang,
“Scaling symbolic evaluation for automated verification of systems code
with serval,” in Proceedings of the 27th ACM Symposium on Operating
Systems Principles, ser. SOSP ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 225–242.

[41] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious Multi-Party machine
learning on trusted processors,” in 25th USENIX Security
Symposium (USENIX Security 16). Austin, TX: USENIX
Association, Aug. 2016, pp. 619–636. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/ohrimenko

[42] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, “Eleos: Exitless
OS services for SGX enclaves,” in Proceedings of the Twelfth European
Conference on Computer Systems, 2017, pp. 238–253.

[43] M. Palatinus, P. Rusnak, A. Voisine, and S. Bowe, “BIP
39: Mnemonic code for generating deterministic keys,”
https://github.com/bitcoin/bips/wiki/Comments:BIP-0039, September
2013, layer: Applications, Comments-Summary: Unanimously
Discourage for implementation, Status: Proposed, Type: Standards
Track.

[44] J. Park, N. Kang, T. Kim, Y. Kwon, and J. Huh, “Nested enclave: Sup-
porting fine-grained hierarchical isolation with sgx,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA),
2020, pp. 776–789.

[45] B. C. Pierce, C. Casinghino, M. Gaboardi, M. Greenberg, C. Hriţcu,
V. Sjöberg, and B. Yorgey, “Software foundations,” Webpage:
http://www.cis.upenn.edu/bcpierce/sf/current/index.html, 2010.

[46] W. Qiang, Z. Dong, and H. Jin, “Se-Lambda: Securing Privacy-Sensitive
Serverless Applications Using SGX Enclave,” in Security and Privacy in
Communication Networks: 14th International Conference, SecureComm
2018, Singapore, Singapore, August 8-10, 2018, Proceedings, Part I.
Springer, 2018, pp. 451–470.

[47] M. Russinovich, “Introducing Azure confidential computing,”
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-
computing/, 2017.

[48] J. Saltzer and M. Schroeder, “The protection of information in computer
systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278–1308, 1975.

[49] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “ZombieLoad: Cross-privilege-boundary
data sampling,” in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 753–768.
[Online]. Available: https://doi.org/10.1145/3319535.3354252

[50] S. Shinde, D. L. Tien, S. Tople, and P. Saxena, “Panoply: Low-TCB
linux applications with SGX enclaves,” in The Network and Distributed
System Security Symposium, 2017.

[51] T. Skolem, “Logico-combinatorial investigations in the satisfiability or
provability of mathematical propositions: a simplified proof of a theorem
by l. löwenheim and generalizations of the theorem,” From Frege to
Gödel. A Source Book in Mathematical Logic, vol. 1931, pp. 252–263,
1879.

[52] P. Subramanyan, R. Sinha, I. Lebedev, S. Devadas, and S. A. Seshia,
“A formal foundation for secure remote execution of enclaves,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 2435–2450.

[53] G. E. Suh, C. W. O’Donnell, and S. Devadas, “Aegis: A single-chip
secure processor,” IEEE Des. Test, vol. 24, no. 6, p. 570–580, nov 2007.

[54] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A practical library
OS for unmodified applications on SGX,” in USENIX Annual Technical
Conference, 2017, pp. 645–658.

[55] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and
R. Strackx, “Foreshadow: Extracting the keys to the intel SGX
kingdom with transient Out-of-Order execution,” in 27th USENIX
Security Symposium (USENIX Security 18). Baltimore, MD:
USENIX Association, Aug. 2018, p. 991–1008. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck

[56] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lippi, M. Minkin,
D. Genkin, Y. Yarom, B. Sunar, D. Gruss, and F. Piessens, “LVI:
Hijacking transient execution through microarchitectural load value
injection,” in 2020 IEEE Symposium on Security and Privacy (SP), 2020,
pp. 54–72.

[57] J. Van Bulck, F. Piessens, and R. Strackx, “SGX-Step: A practical attack
framework for precise enclave execution control,” in Proceedings of the
2nd Workshop on System Software for Trusted Execution, 2017, pp. 1–6.

[58] N. Weichbrodt, P.-L. Aublin, and R. Kapitza, “sgx-perf: A performance
analysis tool for Intel SGX enclaves,” in Proceedings of the 19th
International Middleware Conference, ser. Middleware ’18, 2018.

[59] P. Wuille, “BIP 32: Hierarchical Deterministic Wallets,”
https://github.com/bitcoin/bips/wiki/Comments:BIP-0032, February
2012, layer: Applications, Comments-Summary: No comments yet,
Status: Final, Type: Informational, License: BSD-2-Clause.

[60] Y. Xia, Y. Liu, and H. Chen, “Architecture support for guest-transparent
vm protection from untrusted hypervisor and physical attacks,” in 2013
IEEE 19th International Symposium on High Performance Computer
Architecture (HPCA), 2013, pp. 246–257.

[61] J. Z. Yu, S. Shinde, T. E. Carlson, and P. Saxena, “Elasticlave: An effi-
cient memory model for enclaves,” in 31st USENIX Security Symposium
(USENIX Security 22). Boston, MA: USENIX Association, Aug. 2022,
pp. 4111–4128.

[62] Z. Yu, G. Yang, and X. Xing, “ShadowBound: Efficient heap
memory protection through advanced metadata management and
customized compiler optimization,” in 33rd USENIX Security
Symposium (USENIX Security 24). Philadelphia, PA: USENIX
Association, Aug. 2024, pp. 7177–7193. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity24/presentation/yu-
zheng

[63] S. Zhao, P. Xu, G. Chen, M. Zhang, Y. Zhang, and Z. Lin,
“Reusable enclaves for confidential serverless computing,” in 32nd
USENIX Security Symposium (USENIX Security 23). Anaheim, CA:
USENIX Association, Aug. 2023, pp. 4015–4032. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity23/presentation/zhao-
shixuan

[64] L. Zhou, X. Ding, and F. Zhang, “Smile: Secure memory introspection
for live enclave,” in 2022 IEEE Symposium on Security and Privacy
(SP), 2022, pp. 386–401.

APPENDIX

A. Formal System Details

We formalized TAP∞ as a transition system TS written
in Boogie [14]. To verify TAP∞, the verifier begins with a
process state and, at each step, performs a state transition using
an operation op ∈ G (Table II), as shown in Fig. 9.

Using ACSL-style [15] annotations, we specified how the
state transits after each primitive is triggered. As shown in
Fig. 10a, the requires statement will perform an identity
sanity check over the current running process on the state
machine, provided as pre-conditions. The ensures statement
will confirm the model state details after the state transition,
provided as post-conditions. Specifically, it will ensure that
(1) if LAUNCH succeeds, the new system state is the same
as the expected one, and (2) if LAUNCH fails, the next step
state is the same as the previous one. The pre-/post-conditions

16

Implementation of Specification of
Primitive Layer

Abstract Machine Layer

refinement

satisfies

pre-conditions

(requires)

satisfies

post-conditions

(ensures)

satisfies

post-conditions

(ensures)

assume

pre-conditions

(requires) Verified by

Boogie & Z3

Fig. 9: State transition in TAP∞. Green-colored boxes indicate
detailed implementation verified by Boogie and SMT solvers.

procedure launch(
 /* eid */ eid : tap_enclave_id_t,
 /* PT */ addr_map : addr_map_t,
 ...
 /* entrypoint. */ entrypoint: vaddr_t,
 /* privileged */ privileged : bool
)
 returns (status: enclave_op_result_t);
 requires (forall e : eid, n : int ::
 valid[e] &&
 is_valid_depth(n) &&
 is_valid_depth(n+1));
 ...
 ensures (status == op_success) ==>
 (valid[eid]);
 ensures (status == op_success) ==>
 (pc[eid] == entrypoint);
 ...

(a) LAUNCH Specification

implementation launch(
 /* eid */ eid : tap_enclave_id_t,
 /* PT */ addr_map : addr_map_t,
 ...
 /* entrypoint. */ entrypoint: vaddr_t,
 /* privileged */ privileged : bool
)
 returns (status: enclave_op_result_t);
{
 ...
 metadata_valid[eid] := true;
 metadata_addr_map[eid] := addr_map;
 ...
 metadata_pc[eid] := entrypoint;
 metadata_privileged[eid] := privileged;
 metadata_owner_map[eid] := cpu_enclave_id;
 status := enclave_op_success;
}

(b) LAUNCH Implementation

Fig. 10: TAP∞ formal model in Boogie. Please refer to the
source code for the full version of the specification.

generate a complete verification condition set for Boogie to
verify the TAP∞ model. Furthermore, although the higher-
level SRE only invokes the specification-level primitives, the
primitives themselves must be formally verified by providing
a concrete implementation, as depicted in Fig. 10b.

B. TAP∞ Model Complexity Analysis

This section discusses the formal model complexity con-
cerning λmax in PALANTÍR. To recap, the λmax represents
the maximal number of privilege layers in the multi-layered
privileges (MLP) design.

Overview: Proof Mechanization via λmax. To verify the
model, a verifier must check each machine model’s state
and any processes that may be created. Consequently, the

Child ()

PS Layer

(a) Generic Parent-Children
Model

Enclave

Layer

PS Layer

(b) Legacy PS-Enclave
Model

PS Layer

PE Layer

CE Layer

(c) Single-Layered Privilege
Model

-th

PE Layer

PS Layer

-th

PE Layer

(d) Multi-Layered Privilege Model

Fig. 11: Model complexity analysis. The λ-layered model
means the maximal number of privilege layers is λ. The
PS term indicates privileged software. The black arrow →
indicates the children-to-parent relationship.

complexity of the proof directly depends on the number of
possible processes involved, denoted as δ.

Another observable fact is that the number of possible
processes δ directly correlates with the number of maximal
process layers λmax and the number of maximal children
for each privileged parent enclave n. Specifically, δ can be
bounded by λmax and n together as follows,

δ ≤
λmax∑
λ=1

nλ−1 (10)

This bound is because the parent-children process relationship
can be presented as a tree, with the λ-th layer having at most
nλ−1 process(es). Notice that Eq. 10 establishes for any λmax.
Consequently, an intuitive approach is to analyze the model’s
complexity through induction over λmax with keeping n fixed.

By the observation above, we define constant time Θ(1)
as the cost of verifying a normal process, such as a non-
privileged CE or a non-enclave process. This is because these
processes lack the permission to perform the CREATE and
ENTER operation, thereby, cannot create new processes or
privilege layers. In the following paragraphs, we give a generic
parent-children model, analyze its complexity, and then fit our
TAP∞ model designs into it.

Generic Parent-Children Model. First, we consider a parent-
children model with a top parent node and n children nodes as
shown in Fig. 11a, which can be applied to all of our formal
models below. We denote C(n) as the cost of verifying a
children, and T (n) as the cost of verifying the whole model.
Since T (n) also depends on the cost of children complexity
C(n), it can be re-written as a compositional function of C(n):

T (n) = Mn(C(n)) = Mn ◦ C(n) (11)

17

in which Mn is a function only related to the proof algorithm.
Since the formal verification is based on SAT solvers and the
SAT problem is NP-complete, Mn is at least polynomial.

Legacy PS-enclave Model. As shown in Fig. 11b, the legacy
PS-enclave model without PE fits the parent-children model
above, in which we have C(n) = Θ(1) since each child is a
legacy process. This model could be applied to any original
TEE platform. By Eq. 11, its complexity R(n) satisfies

R(n) = Mn ◦ C(n) = Mn ◦Θ(1) = Mn(Θ(1)) (12)

λ-Layered Models. After introducing MLP, we denote the
complexity of verifying a λ-layered privilege model with at
most n children as Rλ(n).

Case 1. Single-Layered Privilege Model. For a single-layered
model (λ = 1), the top layer fits the parent-children model as
shown in Fig. 11c. Since each child could be considered a
traditional PS-enclave model, its complexity satisfies C(n) =
R(n). By Eq. 11 and Eq. 12, the proof complexity R1(n) has

R1(n) = T (n) = Mn ◦R(n)

= Mn ◦Mn ◦Θ(1)

= M (2)
n (Θ(1))

(13)

in which M
(λ)
n means a compositional function mapping (Mn◦

... ◦Mn) for λ times.

Case 2. Multi-Layered Privilege Model. For the multi-
layered model with the maximal layer number λ (λ ∈ N+), we
can also apply the parent-children model to the top layer, with
each child as a (λ − 1)-layered model as shown in Fig. 11d.
So by Eq. 11 and Eq. 12 we have such a recurrence equation:

C(n) = Rλ−1(n)

Rλ(n) = T (n) = Mn ◦ C(n) = Mn ◦Rλ−1(n)

by induction we know

Rλ(n) = M (λ−1)
n ◦R1(n)

= M (λ+1)
n ◦Θ(1)

= Θ(M (λ+1)
n (1))

(14)

Since Mn is at least polynomial, it has Mn(x) = Ω(
∑q

i=0 mi ·
xi) in which each parameter mi should be a polynomial
function mi(n) related to n.
To solve the M

(λ)
n (1), let

k = max{deg(mi(n))|i ∈ [0, q]}

then we have

Mn(1) = Ω(

q∑
i=0

mi(n)) = Ω(nk) (15)

and

M (λ)
n (1) = Ω(

q∑
i=0

m
(λ)
i (n)) =

q∑
i=0

Ω(ndegλ(mi(n))) = Ω(nkλ

)

(16)
in which mn

i also means a compositional function mapping
(mi◦...◦mi) for n times. From the definition above, we know

given the fixed verification algorithm in the SMT solver, the
degree k of the polynomial function Mn will be fixed.

Conclusion 1. Complexity in General PE Model. By Eq. 14
and Eq. 16, the proof complexity of the λ-layered model is

Rλ(n) = Ω(M (λ+1)
n (1)) = Ω(nkλ+1

) (∀p ∈ N)

which is a double-exponential function Rλ(n) = En(λ) about
λ given a fixed polynomial formal verification algorithm.

Conclusion 2. TAP Complexity. By Eq. 12 and Eq. 15, the
original TAP model fits the PS-enclave model.

RTAP(n) = Mn(O(1)) = Ω(nk)

Conclusion 3. TAP∞ Complexity. In TAP∞, we confine the
upper bound of the number of privilege layers with range λ <
λmax. By Eq. 13 and Eq. 16, our TAP∞ model fits the (λmax−
1)-layered model (λ = λmax − 1).

RTAP∞(n) = Ω(M ((λmax−1)+1)
n (1)) = Ω(nkλmax

)

We can see TAP∞ has an double-exponential-λmax com-
plexity explosion from original TAP complexity Ω(nk). That
is also why we named our model TAP∞.

C. Proof Sketch for Unlimited TAP∞

This section provides a proof sketch by hand that inductively
proves the Secure Remote Execution (SRE) property in TAP∞

with unlimited privilege levels λ, namely λmax = ∞. Since
the Integrity and Confidentiality of TAP∞ has been formally
verified by us in Table VI, we only focus on the Secure
Measurement property. Take a step further, since the first part
of Secure Measurement (Eq. 2) is independent with privilege
level λ, we only pay attention to its second part, the Execution
Determinism property (Eq. 3).

Inductive Proof of Execution Determinism.
To recap, the Execution Determinism states that if two

enclaves e1 and e2 have the same initial states from Eq. 2,
they produce equivalent execution trace deterministically given
equivalent input sequences.

The initial λ = 0 case has been formally proven in
TAP∞ (Table VI). By induction, suppose the Execution De-
terminism is established for any λ < n with some n ∈ N.
Then for an n-length parent-children ownership chain {e0 →
e1 → ... → en} with e0 as the root parent enclave, our goal
is to prove that the execution of en is also deterministic. By
induction, the execution of e0, e1, ..., en−1 are deterministic.
Then the states of en−1 after each small step are deterministic.
Consequently, the startup timing and initial states of en are
deterministic.

Since each PE can not change the inner state of its CE,
the execution of en could be considered as a non-privileged
enclave just same as λ = 0 case of TAP∞. The only difference
is that the enclave ids e0, e1, ..., en−1 are no longer available.
From previous verification, we have known that the Execution
Determinism works for the λ = 0 case. Given the definite
initial state of the to-be-created enclave en and a definite input
stream, the execution of en is also deterministic. □

18

