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Abstract
In software development, the prevalence of unsafe languages
such as C and C++ introduces potential vulnerabilities, es-
pecially within the heap, a pivotal component for dynamic
memory allocation. Despite its significance, heap manage-
ment complexities have made heap corruption pervasive, pos-
ing severe threats to system security. While prior solutions
aiming for temporal and spatial memory safety exhibit over-
heads deemed impractical, we present SHADOWBOUND, a
unique heap memory protection design. At its core, SHADOW-
BOUND is an efficient out-of-bounds defense that can work
with various use-after-free defenses (e.g. MarkUs, FFMal-
loc, PUMM) without compatibility constraints. We harness
a shadow memory-based metadata management mechanism
to store heap chunk boundaries and apply customized com-
piler optimizations tailored for boundary checking. We im-
plemented SHADOWBOUND atop the LLVM framework and
integrated three state-of-the-art use-after-free defenses. Our
evaluations show that SHADOWBOUND provides robust heap
protection with minimal time and memory overhead, suggest-
ing its effectiveness and efficiency in safeguarding real-world
programs against prevalent heap vulnerabilities.

1 Introduction
In the domain of software development, a notable majority
of programs are developed using unsafe languages, such as
C and C++, which while granting detailed control over low-
level operations and memory management, also invariably
expose them to a range of vulnerabilities. The heap, acting as
a critical component for dynamic memory allocation, assumes
an essential role in these programs by managing data objects
of sizes that are not fixed or predetermined. However, the
complexity of heap management has made it a hotspot for vul-
nerabilities, with heap corruption emerging as a widespread
issue [56, 60]. Not only are heap vulnerabilities prevalent, but
they also pose severe threats to system security, as they can be
exploited to manipulate data, bypass security defenses, and
execute arbitrary code, often having serious consequences for
affected systems [30, 68, 74]. Consequently, comprehensive
heap memory protection is imperative.

A comprehensive heap memory protection system should
encompass both the temporal and spatial memory safety, en-
suring that use-after-free and out-of-bound vulnerabilities
are rendered completely unexploitable through its protection

mechanisms. Numerous prior works [24,39,45,46,51,75,76]
target this objective, all of which successfully provide both
temporal and spatial memory safety. However, all of them
suffer from an overhead exceeding 1.5x, rendering them im-
practical defenses in real-world programs. Additionally, some
of them mainly used for bug detection or debugging, are not
robust in terms of security [56]. Although these tools are not
efficient, some prior works [17, 70, 71] can provide robust
temporal memory safety with a low time overhead. Conse-
quently, we believe it is possible to build a comprehensive
memory protection system with them.

Inspired by these observations and thoughts, we propose
SHADOWBOUND to provide a comprehensive heap memory
protection mechanism. The core of SHADOWBOUND is an
efficient out-of-bounds defense, designed to prevent the ex-
ploitation of out-of-bounds bugs by instrumenting boundary
checks into programs. Moreover, it is capable of seamlessly
integrating with various Use-After-Free (UAF) defenses with-
out encountering compatibility issues. While the concept be-
hind SHADOWBOUND is straightforward, developing such an
out-of-bounds defense is not straightforward. We pinpoint two
challenges that necessitate addressing. Firstly, the challenge
lies in minimizing the time overhead of the out-of-bounds
defense. Secondly, compatibility issues with UAF defenses
present a hurdle. Most state-of-the-art UAF defenses necessi-
tate the introduction of a new allocator. Thus, it is beneficial
for the out-of-bounds defense to avoid any requirements for
the allocation algorithm, consequently contracting the design
space. Almost all previous works [27, 33, 34, 36], which fo-
cused on spatial memory safety as discussed in Section 2,
encountered similar challenges.

We address these challenges through two perspectives. Ini-
tially, we designed a shadow memory-based metadata man-
agement mechanism to store the boundary of each pointer’s
corresponding heap chunk. This strategy ensures that SHAD-
OWBOUND necessitates only a single load instruction and a
handful of arithmetic instructions to extract boundaries dur-
ing checks. Moreover, the shadow memory is orthogonal to
the allocation algorithm, thereby enabling its integration with
various allocators, specifically those utilized in UAF defense.
Such a design lays the foundational framework for construct-
ing an efficient and comprehensive heap memory protection
mechanism.

Building upon the established foundation, we deployed
a series of customized compiler optimizations, specifically



tailored for boundary checking. Unlike traditional methods,
which instrument boundary checking at the point of pointer
dereference, SHADOWBOUND instruments these checks at
the site of pointer arithmetic, thereby facilitating easier opti-
mization. Generally, a compiler can retrieve more information
at the pointer arithmetic site. At the pointer dereference site,
the pointer might be passed externally, which hinders the com-
piler from fetching any of the pointer’s properties. Conversely,
the compiler can consistently utilize the computing process
information at the pointer arithmetic site. We designed five
optimizations based on this information, which significantly
reduce the time overhead of SHADOWBOUND.

We implemented SHADOWBOUND atop LLVM 15 and inte-
grated it with three state-of-the-art UAF defense mechanisms:
PUMM [71], FFMalloc [70], and MarkUs [17]. To understand
its security and practicality implications, SHADOWBOUND
was applied to common benchmarks and real-world programs.
Specifically, we utilized SHADOWBOUND to safeguard 19
programs against 34 exploitable out-of-bound bugs. With the
protection provided by SHADOWBOUND, all exploits were
successfully mitigated. Additionally, we undertook synthesis
vulnerability testing, generating 244 inputs to trigger out-of-
bounds bugs in various ways. Furthermore, SHADOWBOUND
successfully prevented the triggering of these bugs. For per-
formance evaluation, we assessed SHADOWBOUND using
the SPEC CPU2017 and SPEC CPU2006 benchmark suites,
as well as three real-world applications: Nginx, Chakra, and
Chromium. SHADOWBOUND exhibits a 5.72% and 10.58%
time overhead on SPEC CPU2017 and SPEC CPU2006, re-
spectively, and introduces negligible overhead to the tested
real-world programs.

In summary, this paper provides the following contribu-
tions:

• We introduce SHADOWBOUND, which employs a novel
metadata design utilizing a compact method to encode
boundary information in shadow memory. This approach
enables SHADOWBOUND to quickly fetch the bound-
aries of a pointer, thereby making it compatible with
various Use-After-Free (UAF) defenses and providing
both spatial and temporal safety with minimal overhead.

• We propose a series of novel optimization techniques
customized for boundary checking at pointer arithmetic
sites, significantly reducing time overhead. These opti-
mizations have been implemented in SHADOWBOUND,
based on LLVM 15. An ablation study demonstrates
their effectiveness in reducing time overhead.

• Through a thorough evaluation, SHADOWBOUND has
been proven to offer robust spatial memory protection
in various environments. It consistently maintains min-
imal time and memory overhead across a spectrum of
benchmarks and real-world applications, affirming its
full compatibility with three state-of-the-art UAF de-
fenses.

Associated Address Access Exp?

S1 Inaccessible Crash ✖

S2 Accessible & No Overlap Benign ✖

S3 Accessible & Overlap Data Leakage or Corruption ✔

Table 1: Consequences of heap out-of-bounds bugs.

2 Background & Design Overview

2.1 Heap Memory Protection
A comprehensive heap memory protection mechanism should
ensure both temporal and spatial memory safety for a program.
In the realm of temporal memory safety, several Use-After-
Free (UAF) defenses stand out for their remarkable perfor-
mance, notably state-of-the-art solutions such as MarkUs [17],
FFMalloc [70], and PUMM [71]. These tools provide full tem-
poral memory safety, setting them apart from partial or proba-
bilistic memory protection methods [43,47,54,55]. Moreover,
they outperform many of their predecessors. For instance,
MarkUs leverages a garbage collection algorithm to iden-
tify live pointers, thereby preventing the creation of dangling
pointers and offering improved performance compared to ear-
lier solutions [40, 53]. FFMalloc introduces an efficient one-
time-allocation (OTA) allocator strategy, surpassing older so-
lutions like Oscar [22] and other OTA allocators [23]. PUMM,
in contrast, utilizes static analysis to pinpoint code units in
charge of specific tasks, deferring the reallocation of memory
freed by the active unit until it finishes its operations.

However, even with these advanced temporal memory pro-
tection mechanisms in place, the challenge of developing a
comprehensive heap memory protection mechanism persists
due to the absence of an adequate spatial memory protec-
tion mechanism. For instance, tools like MEMCHECK [46],
TAILCHECK [27], ASAN [51] and its variants [75, 76] are
redzone-based spatial memory error detection systems, which
are vulnerable to bypasses [56]. While ESAN [24, 36], Soft-
Bound [45], and PACMEM [39] offer robust spatial mem-
ory protection, they still suffer from significant time over-
heads. Moreover, the designs of TAILCHECK, ASAN, and
ESAN require a custom allocation algorithm to adjust the
heap layout for out-of-bound checking. This can lead to con-
flicts when UAF defense introduces new allocators, such as
MarkUs and FFMalloc. Although tools like DeltaPointer [33]
and SGXBound [34] are relatively more efficient in terms of
time overhead, they limit memory allocation to 4GB. Con-
sidering that UAF defense also amplifies memory overheads,
this hinders their utility in large-scale applications.

2.2 Out-Of-Bounds Exploitation
Out-of-bounds vulnerability is a specific manifestation of spa-
tial errors. Depending on the behavior of a program and the
logic of the memory allocator, the consequences of a heap
out-of-bounds bug can vary significantly. We present a com-
prehensive summary of these potential consequences in Table



1, where the associated address refers to the memory address
involved in an out-of-bounds read or write instruction. If the
system has removed permission to access the associated ad-
dress (S1), the out-of-bounds access will trigger a page fault
and result in a crash. Another consequence is when the ad-
dress remains accessible but still falls within the original heap
chunk, without overlapping with other heap chunks or the
freed regions (S2). This situation can occur because most
allocators align the size of each heap chunk to 8 or 16 bytes,
so they allocate more memory space than the program ini-
tially requested. Consequently, out-of-bounds access within
such a region may happen. In the final scenario, the memory
remains accessible, and the associated address may overlap
with another region (S3), including other heap chunks, freed
regions, or even extending beyond the heap boundary.

The bug in S1 is inherently non-exploitable, as it consis-
tently results in a crash. In S2, despite the presence of an
out-of-bounds bug within the logic of the program, such out-
of-bounds access will never occur due to the extra space allo-
cated by the allocator. In these instances, we can assume that
the allocator "fixes" the bug. Conversely, an out-of-bounds er-
ror in S3 is notably susceptible to exploitation. An attacker can
strategically manipulate the layout of the heap, causing the as-
sociated address to overlap with critical data. This could lead
to data leakage, corruption, or even enable privilege escalation,
compromising the entire system. To exploit an out-of-bounds
bug in S3, the attacker must first create an out-of-bounds
pointer and subsequently attempt to trigger a dereference with
this pointer. If we can detect or eliminate the creation of
out-of-bounds pointers that may be dereferenced later, any
exploitation attempt will be rendered ineffective. SHADOW-
BOUND follows such a line of thought, which can defend
against out-of-bounds exploitation by either transferring the
S3 to S1/S2 or detecting all S3.

2.3 Design Overview
SHADOWBOUND diligently works to prevent the exploita-
tion of out-of-bounds bugs by instrumenting boundary checks
into programs. It encompasses two principal modules: the
metadata management module and the compiler module. The
metadata management module maintains shadow memory,
recording the boundaries of each pointer’s corresponding heap
chunk within the shadow memory at allocation sites. Concur-
rently, the compiler module instruments boundary-checking
instructions at pointer arithmetic sites, precluding the genera-
tion of out-of-bounds pointers. Additionally, optimization is
an essential role of the compiler module; it employs a suite of
customized optimization techniques, specifically tailored for
boundary checking, which ensures SHADOWBOUND incurs
very low time overhead. Notably, both modules are meticu-
lously designed to guarantee seamless integration with various
UAF defenses, enabling SHADOWBOUND to collaborate with
other UAF defenses to provide exhaustive heap protection.

Heap
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Figure 1: Shadow Memory Mapping and Metadata Layout

3 Threat Model
SHADOWBOUND can be deployed either in conjunction with
other UAF defense mechanisms or independently. When de-
ployed alongside other UAF defenses, it is presumed that the
target program contains one or more heap out-of-bounds and
use-after-free vulnerabilities. If SHADOWBOUND is used in-
dependently, the assumption is limited to the presence of heap
out-of-bounds vulnerabilities. In this threat model, an attacker
can only attempt to exploit these vulnerabilities to potentially
escalate privileges. Our goal is to prevent these vulnerabilities
to being exploitable.

We assume the shadow memory will not compromise the se-
curity for three reasons. First, doing so would require exploit-
ing vulnerabilities in our concise and robust shadow memory
management code, which comprises less than 100 lines, giv-
ing us confidence in its security. Second, compromising the
system in another way would necessitate exploiting a program
vulnerability that allows an underflow write, overcoming a
substantial 4TB space between the heap and shadow memory.
This level of intrusion would require sophisticated exploita-
tion primitives, which SHADOWBOUND is designed to detect
and thwart preemptively. Finally, the attacker has no chance
to infer the shadow memory addresses of objects. Since the
attacker can only exploit vulnerabilities to leak some infor-
mation, similar to the second reason then exploitation will be
detected by SHADOWBOUND.

4 Metadata Management
In this section, we introduce our metadata management de-
sign, covering its layout, creation process, and how SHADOW-
BOUND leverages this metadata to enhance program security.
We will also discuss the compatibility of metadata manage-
ment with various UAF defense mechanisms.

4.1 Shadow Memory Layout
SHADOWBOUND utilizes shadow memory to track the bound-
aries of each pointer’s corresponding heap chunk in the pro-
gram. As shown in Figure 1, SHADOWBOUND maps each
aligned 8 bytes of the program’s heap memory into 8 bytes
of shadow memory. Within this shadow memory representa-
tion, the front 4 bytes are dedicated to storing one-eighth of
the length from the aligned 8 bytes to the beginning of the
respective heap chunk. Conversely, the back 4 bytes are used



1 void foo(void *ptr, int n) {
2 bound_check(ptr, ptr + sizeof(int));
3 int *arr = (int *) ptr;
4

5 for (int i = 0; i < n; ++i) {
6 bound_check(arr, arr + i + 1);
7 other_function(&arr[i]);
8 }
9 }

Listing 1: Example: Instrumentation of SHADOWBOUND

to record one-eighth of the length from the aligned 8 bytes to
the end of the corresponding heap chunk. The creation and
initialization of shadow memory occur immediately following
the allocation operation. The feasibility of this design stems
from two fundamental observations.

Firstly, nearly all mainstream allocators, such as ptmalloc
[62], tcmalloc [31], and jemalloc [18], default to 8-byte or
16-byte aligned allocations. This intrinsic behavior ensures
that any valid 8-byte aligned memory address always belongs
to the same memory chunk. Consequently, there is no need
to maintain boundary information for every byte; instead,
we can efficiently store the boundary information for every
8-byte aligned block. This approach significantly optimizes
memory usage. The second observation is that the maximum
single-time allocation size for these allocators is limited to 8
GB (233 bits). AddressSanitizer [51]’s default allocator also
has such a feature. Building upon the previous observation,
we can deduce that the length between any 8-byte aligned
block and the beginning or end of the corresponding chunk is
always a multiple of 8. Hence, 30 bits are sufficient to store
this length information, and we can use 8 bytes or 64 bits to
store both length values.

4.2 Boundary Checking
As mentioned in subsection 2.3, unlike traditional checking
methods that instrument checking instructions at the pointer
dereference site, SHADOWBOUND instruments these checks
at the pointer arithmetic site. LLVM provides two types of
pointer arithmetic instructions. The getelementptr (GEP)
instruction takes a base pointer and a set of indices to calculate
the result pointer. If these indices are not properly checked,
an attacker can exploit a GEP to perform an out-of-bounds
access. The bitcast instruction (BC) allows the conversion
of a base pointer from one type to a result pointer with another
type. However, if the pointer cannot sufficiently accommo-
date the target type, it may potentially result in an overflow
issue. Listing 1 provides an example of how SHADOWBOUND
checks these two types of instructions. In line 3 of the code,
an attempt is made to convert a void* pointer to an int*
pointer. To ensure that the resulting pointer can hold at least
one integer, SHADOWBOUND inserts a check at line 2. In line
6, a new pointer is generated, and SHADOWBOUND inserts a
check to ensure that the new pointer and the old pointer are
located within the same memory chunk.

The pseudocode for the boundary check, as shown in List-

1 void bound_check(uint64_t old, uint64_t res) {
2 if (!IsHeapAddress(old)) return;
3 uint64_t align = old & ~7;
4 uint64_t shadow = align + OFFSET;
5 uint64_t pack = *(uint64_t*) shadow;
6 uint64_t beg = align - ((pack & 0xffffffff) << 3);
7 uint64_t end = align + ((pack >> 32) << 3);
8 if (res < beg || res >= end)
9 error("Heap out-of-bounds Detected");

10 }

Listing 2: Pseudocode for boundary checking

ing 2, describes a checking function that takes two parame-
ters. The function first checks if the pointer is located in the
heap region (Line 2). If so, it aligns the base pointer to an
8-byte boundary and calculates the corresponding shadow
memory address (Lines 3-4). It then loads the metadata from
the shadow memory (Line 5). The next two lines calculate the
boundary. Specifically, for the beginning address, the lower
32 bits of the metadata are taken and shifted left by 3 (effec-
tively multiplying by 8) to get the actual distance from the
aligned address to the beginning of the corresponding heap,
and then this distance is subtracted from the aligned address
to determine the beginning address (Line 6). Conversely, for
the end address, the upper 32 bits are taken and shifted left
by 3 to get the distance from the aligned address to the end
of the corresponding heap, then this distance is added to the
aligned address to obtain the end address (Line 7). Finally, the
function verifies whether the result pointer falls outside these
computed boundaries (Line 8). If the result pointer is less
than the starting address or greater than or equal to the ending
address, it triggers an error, leading to program termination.
Due to the boundary-checking code’s reliance on just a sin-
gle load instruction and a handful of arithmetic operations,
the verification process is exceptionally quick, resulting in
minimal execution time.

4.3 Compatibility with UAF Defense
SHADOWBOUND introduces continuous memory as shadow
memory to track the boundaries of each heap chunk. This
technique empowers SHADOWBOUND to seamlessly inte-
grate with virtually all UAF defense. Within the scope of this
research paper, we have successfully integrated three state-of-
the-art UAF defenses into SHADOWBOUND, MarkUs [17],
FFMalloc [70], and PUMM [71]. Each of these defenses im-
plements a secure allocator, which means they need to modify
the allocation algorithms, potentially resulting in changes to
the heap layout. It’s noteworthy that the shadow memory op-
erates independently of the allocation algorithm and heap
layout. This ensures that SHADOWBOUND does not conflict
with the design of secure allocators.

In addition to secure allocators, some research employs
pointer invalidation algorithms for UAF defense [38, 65, 72].
While this approach may not currently provide optimal perfor-
mance, there is potential for improvement in its effectiveness
in the future. Consequently, we also demonstrate SHADOW-



1 struct obj {
2 int x, y, z;
3 };
4 void foo() {
5 char *c = malloc(3 * sizeof(int));
6 struct obj* o = malloc(sizeof(struct obj));
7 ...
8 }
9 void bar(char *c) {

10 c[0] = 'x';
11 c[1] = 'y';
12 c[2] = 'z';
13 escape(c + 1);
14 }
15 void zoo(struct obj *o) {
16 o->x = 1;
17 o->y = 2;
18 o->z = 3;
19 }

Listing 3: Example of Runtime-Driven Checking Elimination

BOUND’s compatibility with these tools. Typically, these ap-
proaches involve tracking all pointers to allocated objects and
explicitly invalidating them once the referenced objects are
freed, requiring program instrumentation. It’s worth noting
that SHADOWBOUND also necessitates program instrumenta-
tion, but there is no conflict because SHADOWBOUND instru-
ments pointer arithmetic instructions, while they only need to
instrument dereference instructions.

5 Compiler Optimization
In this section, we introduce the compiler optimization em-
ployed by SHADOWBOUND, which play a important role in
reducing time overhead while maintaining robust security.

5.1 Runtime-Driven Checking Elimination
This optimization is based on a simple idea: if each heap
chunk has infinite space, out-of-bounds access becomes im-
possible, rendering all boundary checks redundant and elim-
inable. The core of this concept relies on the runtime envi-
ronment’s ability to provide the compiler with extra informa-
tion, enabling it to eliminate specific boundary checks that
static analysis techniques alone cannot resolve. By leveraging
runtime information, certain optimizations become feasible,
empowering the compiler to remove unnecessary boundary
checks, and significantly enhancing system efficiency. How-
ever, it’s impractical to allocate infinite or even very large
spaces for every chunk due to the potential for high memory
overhead. Therefore, SHADOWBOUND chooses an improved
approach to balance time overhead and memory overhead.
Specifically, SHADOWBOUND reserves a fixed n bytes for
every heap chunk, denoted as reserved space. Then, SHAD-
OWBOUND will try to find all eliminable boundary checks
using the reserved space provided by the runtime.

As mentioned in subsection 4.2, SHADOWBOUND inserts
boundary checks for every pointer arithmetic instruction. Each
instruction contains a base pointer argument and generates a
result pointer. These two pointers are used as the arguments

1 struct obj {
2 int *a;
3 int len;
4 };
5 void foo(struct obj *o, int len) {
6 // initialize the object
7 o->len = len;
8 o->a = malloc(len * sizeof(int));
9 ...

10 void bar(struct obj *o) {
11 for (int i = 0; i < o->len; ++i)
12 o->a[i] = i;
13 }

Listing 4: Example of Security Pattern Identification and
Directional Boundary Checking Optimization

passed to the boundary checking. Notably, if the offset be-
tween the result pointer and base pointer can be confirmed to
be less than n bytes at compile time, and the result pointer will
never be used as a base pointer in another boundary checking,
SHADOWBOUND can safely remove the boundary checking.
This is because SHADOWBOUND already reserves n bytes for
every heap chunk, ensuring that every live pointer, which may
be used as a base pointer in boundary checking, has at least n
bytes of space available.

We can use Listing 3 as an example to illustrate how the
optimization works. In the function bar, the argument c gen-
erates three pointers in lines 10 to 12, all with offsets less
than 8. If we set n to 8, SHADOWBOUND can safely remove
these checks. However, we cannot eliminate the check for line
13 because the pointer c + 1 is passed to another function,
indicating that it may potentially be used as a base pointer
for boundary checking in that function. If SHADOWBOUND
were to eliminate the boundary check for a pointer that has
already pointed to the reserved space, it could lead to false
negatives due to the elimination in the escape function.

Furthermore, the optimization concept can also be applied
to eliminate structure member accesses, as demonstrated in
the function zoo of Listing 3. The object is allocated at line
6, and the return type of the allocation function is void*,
not struct obj*. Consequently, the compiler inserts a type-
casting instruction, which prompts SHADOWBOUND to in-
sert a boundary check to ensure that the allocated memory
space can accommodate the structure obj. This type-casting
validation happens in runtime and allows the compiler to con-
fidently determine that the memory space associated with a
typed pointer is at least the size of its type. Consequently, the
compiler can infer that pointers referring to structure fields are
in-bounds. As a result, SHADOWBOUND can safely eliminate
the boundary checks for lines 16 to 18.

5.2 Directional Boundary Checking
The boundary checking of SHADOWBOUND consists of two
parts: the underflow check ensures that the memory access
address is greater than or equal to the lower boundary of the
allocated memory chunk, while the overflow check verifies
that the address falls within the upper boundary. We can



observe that during boundary checking, the base pointer is
always valid. If not, SHADOWBOUND will throw an error
when creating the base pointer and the program terminated.
So that if we can determine the sign (positive or negative) of
the offset between the base pointer and the result pointer, we
can optimize by inserting only one side of the checking code.
For instance, in line 12 of Listing 4, the offset variable i starts
from zero, ensuring that it is always positive, eliminating the
need to check for potential underflow pointers.

To implement this optimization, SHADOWBOUND lever-
ages LLVM’s range analyzer [42], a powerful tool that pro-
vides insights into the possible value ranges of variables dur-
ing program execution. By analyzing the sign of the offset,
we can determine which boundary checks cannot be violated.
For instance, if range analysis indicates a consistently positive
offset, we optimize by focusing solely on the overflow check,
thus eliminating the need for underflow verification. It is
worth emphasizing that the use of range analysis also ensures
that checked arithmetic instructions will not result in integer
overflow (or wraparound), thereby maintaining the security
assumption of SHADOWBOUND. This approach is particu-
larly beneficial in sections of code that are loop-intensive,
as loops tend to undergo multiple iterations with consistent
direction.

5.3 Security Pattern Identification
Many programs frequently employ simple code patterns to
prevent out-of-bounds, making it unnecessary to validate code
that has already been safeguarded by the original program. In
this context, SHADOWBOUND focuses on the identification of
two primary patterns: Constant Array Argument and Length-
Pointer Association.
Constant Array Argument The pattern is used to describe
function arguments, where specific function arguments con-
sistently accept constant-length arrays and the access offset
for these arguments is always bound by the same constant.
These arguments can be either stack arrays, global arrays,
heap arrays, or constant-length arrays within a structure. If
the arguments always belong to the first two types, we can
directly remove the associated checks, as SHADOWBOUND
primarily focuses on heap security. To accomplish this, SHAD-
OWBOUND employs whole-program analysis to identify these
function arguments and subsequently eliminates the redun-
dant boundary checks associated with them.

The identification algorithm focuses on functions that are
not the target of indirect call instructions. This is because if a
function can be the target of an indirect call, it becomes chal-
lenging to analyze which properties the function’s arguments
consistently hold, as we may not be able to identify all call
sites for this function. To determine if a function is the target
of indirect call instructions, SHADOWBOUND examines ev-
ery instruction in the program and verifies that the function
only appears as the called-function argument in call-related
instructions. If the function is stored in memory or passed

as a function argument, SHADOWBOUND assumes it might
become the target of an indirect call.

After identifying eligible functions, SHADOWBOUND in-
spects the pointer-type arguments of each function. It traverses
the entire program to identify all call sites associated with
each function. SHADOWBOUND evaluates each call site to de-
termine whether the function’s arguments consistently exhibit
the characteristics of a constant length. To simplify the analy-
sis, this assessment revolves around two key criteria: firstly,
whether the pointer is instantiated within the same function
where the call site is located, and secondly, whether the length
of the pointer remains constant. If an argument is discovered
to be loaded from memory or supplied as a function argument,
SHADOWBOUND refrains from engaging in further recursive
analysis and instead assumes that it fails to meet the requisite
criteria.

If an argument consistently meets the criteria of being a
constant-length pointer after assessing all call sites, SHAD-
OWBOUND proceeds to the final step. In this concluding
phase, SHADOWBOUND meticulously examines the pointer
arithmetic instructions related to the argument within the cor-
responding function. It leverages the LLVM range analyzer
to confirm that the offsets generated by these instructions are
strictly bound by the corresponding constant length. For those
arguments that successfully pass all verifications, SHADOW-
BOUND can confidently eliminate the associated checks.
Length-Pointer Association The Length-Pointer Associa-
tion pattern is a common structural configuration in programs,
characterized by two essential members: one representing a
pointer and the other indicating the length of the data pointed
to. These two members are referred to as the pointer member
and the length member in the pattern. This pattern establishes
a direct relationship between the pointer member and the cor-
responding length member. As demonstrated in Listing 4,
through the initialization code at lines 7 to 8 for the structure
obj, we can discern that the structure obj exemplifies this
pattern, with a serving as a pointer to an integer array and
len denoting the length of that array.

Identifying the Length-Pointer Association pattern is not
always straightforward. For example, the modification for the
pointer member and length member may not happen in the
same scope, which may require heavy dataflow analysis tech-
niques to address it. To simplify the identification process, we
have introduced specific constraints that facilitate recognition.
Firstly, both members must consistently undergo modifica-
tions within the same scope. Secondly, modifications to these
two members should exclusively occur at the allocation or
deallocation site. This typically means that the pointer is as-
signed as the return value of an allocation function or as a null
pointer. Finally, the length field must precisely match the allo-
cated memory’s size at the allocation site. These constraints
streamline the pattern identification process.

SHADOWBOUND follows a systematic process to identify
the Length-Pointer Association pattern. Initially, it identifies



1 void foo(char *p) {
2 char *a = p + 1;
3 char *b = a + 2;
4 char *c, *d;
5 if (random() > 0.5)
6 c = a + 3;
7 else
8 c = b + 4;
9

10 for (d = c; d < p + 100; d++)
11 *d = 'x';
12 }

Listing 5: Example of Merge Metadata Extraction

all allocation function call sites and checks if their return val-
ues are assigned to structure members. If this condition is met,
SHADOWBOUND further verifies if the length argument of the
allocation function call is stored in another structure member.
If both conditions are satisfied, SHADOWBOUND assumes
the potential presence of the pattern. Subsequently, SHADOW-
BOUND scans the entire program to determine whether the
two members of the structure fulfill all the pattern require-
ments that we mentioned before at all modification sites.

Upon confirming that these two members match the pattern,
it means that the length member consistently indicates the
length of the pointer member, SHADOWBOUND proceeds to
check all pointer arithmetic instructions that utilize the pointer
member as the base pointer. If the offset between the base
pointer and the result pointer is safeguarded by the length
member, SHADOWBOUND confidently removes the corre-
sponding boundary checks. This meticulous process ensures
precise optimization based on the Length-Pointer Association
pattern.

5.4 Merge Metadata Extraction
Within its boundary-checking process, SHADOWBOUND em-
ploys a two-stage approach, which involves an initial extrac-
tion stage to obtain the base pointer’s boundary, followed
by a subsequent checking stage to validate the result pointer.
It’s essential to highlight that the extraction stage is notably
more time-consuming than the second stage due to the re-
quirement of a load instruction for extracting metadata from
the shadow memory. Importantly, the load address is exclu-
sively determined by the base pointer. Consequently, in cases
where multiple result pointers are computed from the same
base pointer, it becomes possible to optimize by merging the
extraction stage of these result pointers’ boundary-checking
processes, thereby avoiding redundant address loading.

To maximize the merging of extraction stages, SHADOW-
BOUND employs a backtrace algorithm. Specifically, SHAD-
OWBOUND enumerates all pointer arithmetic instructions and
attempts to backtrack their sources. We illustrate how the
algorithm works using Listing 5. We start with the pointer d,
which is initialized with c and then self-incremented, making
d dependent on c. While c could be computed from either a or
b, it is evident that both a and b are ultimately derived from p.
Consequently, all pointers in the function foo are generated

from p, establishing p as the source of pointers a, b, c, and
d. Once all pointer sources are collected, for those pointers
sharing the same source, we insert the boundary extraction
code after the source. This eliminates the need to extract the
boundary again in the subsequent checking.

5.5 Redundant Checking Elimination
In this subsection, we introduce two common techniques em-
ployed by SHADOWBOUND to eliminate redundant checks.
The first optimization typically occurs when both the allo-
cation and the pointer arithmetic take place within the same
scope, or when the base pointer is an array member of a
structure. In such cases, the size of the base pointer is inher-
ently determined by its allocation size or type. Consequently,
the compiler can optimize this scenario by comparing the
allocation size with the offset between the base pointer and
the result pointer. If the offset is consistently smaller than
the allocation size, SHADOWBOUND can confidently assert
that a pointer arithmetic will never result in an out-of-bounds
condition. This empowers SHADOWBOUND to eliminate the
corresponding checks effectively.

The second technique entails conducting a thorough analy-
sis of the relationships between pointer arithmetic instructions
within a program. In particular, it commences by identifying
cases where one pointer arithmetic instruction either dom-
inates or post-dominates another instruction, provided that
they share the same base pointer. In such instances, SHAD-
OWBOUND will proceed to compare the offsets of these two
pointer arithmetic instructions. If it is consistently observed
that the dominated computing instruction’s offset is greater
than that of the other instruction, then the underflow check-
ing for this instruction can be safely eliminated. Conversely,
if it is consistently found that the dominated computing in-
struction’s offset is smaller than that of the other instruction,
then the overflow checking for this instruction can be safely
eliminated.

6 Implementation
In this section, we describe our implementation of the com-
piler and runtime support for SHADOWBOUND, as well as
our integration of state-of-the-art UAF defense mechanisms
into the SHADOWBOUND framework.

6.1 Compiler & Runtime Support
SHADOWBOUND is build upon LLVM 15.0.6 framework [37]
and consists of two components. The first, known as the func-
tion pass, is responsible for the insertion and optimization
of checking instructions at the LLVM Intermediate Repre-
sentation (IR) level. The second component is the runtime
module, designed for shadow memory allocation and the man-
agement of associated metadata. These two components work
seamlessly together, forming the foundational architecture of
SHADOWBOUND.



Function Pass. The function pass is implemented as an in-
ternal sanitizer within LLVM. Unlike other sanitizers, such
as AddressSanitizer [51] or Memory Sanitizer [59], this tool
is not designed to detect a specific class of bugs. Instead,
it serves as a defense mechanism. Users can enable SHAD-
OWBOUND using the -fsanitize=overflow-defense flag.
The function pass collects all pointer arithmetic instructions,
including getelementptr and bitcast, and employs opti-
mization algorithms that are mentioned in section 5 to de-
termine which instructions require checking and how they
should be checked.

Given that various optimization methods may interact with
each other, an improper optimization sequence could poten-
tially hinder both optimization performance and compilation
speed. Therefore, we meticulously select the order in which
each optimization method is applied, ensuring that our choices
result in the best possible outcome. The function pass begins
with Runtime-Driven Checking Elimination, as it effectively
eliminates a significant number of checking instructions, re-
ducing the burden for subsequent optimizations. Following
that, the function pass executes Redundant Checking Elimina-
tion, Security Pattern Identification, and Directional Boundary
Checking Optimization in sequence. Finally, the function pass
concludes with the Merge Metadata Operation.

It is noteworthy that Security Pattern Identification necessi-
tates a whole-program analysis. However, performing a whole
program analysis requires access to information from all func-
tions within the program, whereas the LLVM function pass
is limited in its scope, and capable of retrieving information
only from the currently processed function. To address this
challenge, we have implemented an external analyzer similar
to KINT [67]. This analyzer is capable of both dumping and
analyzing the IR code of each function, subsequently saving
the analysis results to a configuration file before compiling
the program. The function pass then accesses and utilizes the
information stored in this configuration file for its optimiza-
tion, ensuring a more holistic approach to security pattern
identification and mitigation.
Runtime Module. The runtime module of SHADOWBOUND
has two primary functions. First, it manages metadata, which
includes the allocation of shadow memory. The size of the
shadow memory in SHADOWBOUND is equal to that of the
original heap, mirroring the configuration of MemorySan-
itizer. Thus, our implementation closely resembles Memo-
rySanitizer’s shadow allocation method. Moreover, we in-
troduce reserve operations at allocation sites, as detailed in
Section 5. Second, the runtime module checks the arguments
of frequently used libc functions, such as memset and strcpy,
to guard against heap out-of-bounds incidents within these
functions. To instrument the necessary checking code for
these libc functions, we use a technique similar to Address-
Sanitizer. This method effectively identifies the functions
needing validation and inspects their arguments for potential
out-of-bounds access.

CVE/Issue ID Link Program Prevention Type
CVE-2021-32281 [10] gravity ✔ OOB Detected
CVE-2021-26259 [8] htmldoc ✔ OOB Detected
CVE-2020-21595 [6] libde265 ✔ OOB Detected
CVE-2020-21598 [7] libde265 ✔ OOB Detected
CVE-2018-20330 [1] libjpeg-turbo ✔ OOB Detected
CVE-2021-4214 [11] libpng ✔ OOB Detected
CVE-2020-19131 [4] libtiff ✔ OOB Detected
CVE-2020-19144 [5] libtiff ✔ OOB Detected
CVE-2022-0891 [13] libtiff ✔ OOB Detected
CVE-2022-0924 [14] libtiff ✔ OOB Detected
CVE-2020-15888 [3] Lua ✔ OOB Detected
CVE-2022-0080 [12] mruby ✔ Benign Running
Issue-5551 [29] mruby ✔ Transformation
CVE-2019-9021 [2] php ✔ OOB Detected
CVE-2022-31627 [16] php ✔ OOB Detected
CVE-2021-3156 [9] sudo ✔ Benign Running
CVE-2022-28966 [15] wasm3 ✔ OOB Detected

Table 2: Heap out-of-bounds Prevention Results for SHAD-
OWBOUND on Real-World Vulnabilities.

6.2 UAF Defense Integration
As discussed in subsection 4.3, SHADOWBOUND theoreti-
cally can collaborate with three state-of-the-art UAF defense
tools: MarkUs, FFMalloc, and PUMM. In this subsection, we
delve into the implementation of each tool and present how
we seamlessly integrate them within the SHADOWBOUND
framework, showcasing the integration achieved with minimal
effort.

Both MarkUs and FFMalloc introduce new allocators.
However, we encountered a challenge in which the heap re-
gion utilized by these allocators conflicted with our shadow
memory region. Specifically, we designate two separate re-
gions for the heap and shadow memory. The original heap
memory of FFMalloc and Markus is not allocated within these
regions. Therefore, we modify the code to adjust the heap
region. It is important to note that we do not alter their al-
location algorithm; we merely "shift" the allocated objects.
Furthermore, we implemented code to facilitate the allocation
and initialization of shadow memory after each allocation
function. This adjustment ensured that these allocators gained
the ability to allocate shadow memory for each heap chunk
and initialize it.

The implementation of PUMM differs from that of MarkUs
and FFMalloc. Instead of creating a new allocator, PUMM
wraps the original allocator. This wrapping mechanism in-
volves deferring specific deallocation operations based on a
policy. PUMM generates this policy through binary-based
analysis, which obviates the necessity for many modifications
to enable integration. To integrate PUMM, our approach en-
tails compiling the program with SHADOWBOUND and then
utilizing PUMM to analyze the binary and generate the policy.
Subsequently, PUMM can wrap the program’s allocator by
the generated policy.



7 Evaluation
In this section, we address three key questions to assess the
effectiveness and efficiency of SHADOWBOUND:

1. Does SHADOWBOUND effectively prevent heap out-of-
bounds-based exploits?

2. What is the quantitative impact of SHADOWBOUND on
both runtime performance and memory utilization?

3. How do individual customized compiler optimization
algorithms influence time overhead?

All the experiments were conducted on a bare-metal ma-
chine configured with Ubuntu 22.04 system, 12th Gen Intel
i7-12700 CPU at 4.9 GHz, 32GB RAM, and 1T SSD storage.

7.1 Security Evaluation
Real-World OOB Prevention To validate SHADOW-
BOUND’s ability to prevent real-world heap out-of-bounds-
based exploits, we conducted a comprehensive evaluation.
This assessment included 34 real-world vulnerabilities; half
of them were collected from previous works [75, 76] and
MAGMA [28] dataset, while the others were selected from
the CVE database [20, 21, 66] and program-specific issue
reports. These vulnerabilities spanned a diverse set of 19 ap-
plications, encompassing servers, video encoders, language
interpreters, widely adopted libraries, and UNIX utilities. For
each case, we collected the corresponding Proof of Concept
(PoC) that triggers program crashes. We observed how these
programs, when compiled with SHADOWBOUND, prevented
the associated exploitation attempts.

In Table 2, we present the evaluation results on vulnerabili-
ties selected by us. The results based on vulnerabilities col-
lected from prior works are shown in Table 7 in the Appendix.
SHADOWBOUND successfully prevents all cases, demonstrat-
ing its capability to prevent real-world heap out-of-bounds-
based exploitation. In each case, we observed the three distinct
forms through which SHADOWBOUND effectively prevented
vulnerabilities: OOB Detected, Benign Running, and Trans-
formation:

• OOB Detected (OD): SHADOWBOUND successfully
detects heap out-of-bounds read or write instructions
when an attempt is made to compromise a program used
as a proof-of-concept (PoC). In simpler terms, SHAD-
OWBOUND acts as a vigilant guard, spotting and halting
any unauthorized attempts to access memory beyond its
boundaries.

• Benign Running (BR): In certain scenarios, SHADOW-
BOUND "fixes" the vulnerability by allocating additional
memory space for each memory chunk. This extra space
transforms what would otherwise be an unauthorized
memory access into a legitimate operation, similar to
creating an additional safety buffer. We confirmed this
using a semi-automatic gdb script. The script fetched
both the original requested size and the actual allocated

Program #Input #OD #BR #TF

cxxflit 1 1 0 0
libpcap 4 2 2 0

libxml2_reader 127 127 0 0
libxml2_xml 61 46 15 0

proj4 3 0 3 0
zstd 48 45 3 0

Total 244 221 23 0

Table 3: Heap out-of-bounds Prevention Results for SHAD-
OWBOUND on Synthesis Vulnerabilities.

size to determine the address range of the reserved space,
and then checked if the out-of-bounds access fell within
this range.

• Transformation (TF): SHADOWBOUND transforms
heap out-of-bounds vulnerabilities into alternative, non-
exploitable forms. During our manual verification pro-
cess, we observed instances of null-pointer dereferences
in these cases. These dereferences occurred because
PoCs attempted to dereference pointers loaded from the
reserved memory space created by SHADOWBOUND for
each memory chunk, and the reserved space is cleared to
zero during allocation. Thus, the null-pointer dereference
happened.

Synthesis Vulnerability Prevention To demonstrate SHAD-
OWBOUND’s robustness in security, we conducted an exten-
sive evaluation using the RevBugBench dataset [77]. The
dataset was originally designed for fuzzing testing and com-
prises a series of programs, each of which has been injected
with over 1,000 distinct vulnerabilities collected from the real
world. We employed AFL++ [26] to fuzz each program for 24
hours, generating numerous inputs capable of triggering pro-
gram crashes. Subsequently, we assessed the prevention abil-
ity by using these inputs. It’s essential to clarify that although
the vulnerabilities were sourced from real-world cases, they
might not appear at the same time in the real world. Therefore,
these vulnerabilities triggered by inputs are synthetic but they
are very close to real-world vulnerabilities.

Furthermore, recognizing that not all inputs result in heap
out-of-bounds errors and certain inputs might execute the
same program path, we implemented input refinement using
the following methodology. Initially, we employed ASAN to
discern inputs that cannot trigger heap out-of-bounds errors.
For instance, inputs that solely lead to stack out-of-bounds
or null-pointer dereference issues were automatically filtered
out. Notably, every input will be considered unique if it has a
distinct execution path leading to the final crash site. This is
because even if another input results in the same crash site,
their execution paths may diverge. Consequently, one of the
redundant inputs was removed. The identification of triggered
bug sets was facilitated by RevBugBench when provided with
the program and inputs.

Following the meticulous cleanup process, we confirmed
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Figure 2: The time and memory overhead of SHADOWBOUND, SHADOWBOUND + PUMM, SHADOWBOUND + FFMalloc,
SHADOWBOUND + MarkUs, AddressSanitizer, ASAN−−, ESAN on SPEC CPU2017. The upper two lines represent the results
for time overhead, while the lower two outline the results for memory overhead. A value of 1x signifies no overhead. The
geomean time overhead of each system is 5.72%, 6.60%, 9.95%, 16.20%, 62.03%, 79.85% and 138.76%. The geomean memory
overhead of each system is 54.59%, 55.29%, 218.20%, 302.51%, 116.55%, 112.33%, 2.70%.

that all remaining inputs are indeed able to trigger heap out-
of-bounds errors, with each input following a distinct trigger
path. Subsequently, we compiled the benchmark programs
with SHADOWBOUND and conducted testing using these in-
puts. The results, as detailed in Table 3, showcased SHAD-
OWBOUND’s effective prevention of these errors, with the
majority being detected (#OD), while the remaining inputs
allowed the program to execute without issues (#BR). All
the benign running cases were also confirmed by the gdb
script mentioned previously. Unlike our observations in real-
world bug evaluations, we did not encounter any instances of
Transformation (#TF), which we believe is normal given its
dependency on the underlying program’s logic.

7.2 Performance Comparison
SPEC CPU Benchmark To perform a comparative anal-
ysis between SHADOWBOUND and related tools that offer
comprehensive heap memory protection, including both out-
of-bounds (OOB) and Use-After-Free (UAF) defense, we in-
tegrated three state-of-the-art UAF defense tools: PUMM,
FFMalloc, and MarkUs with SHADOWBOUND. We then

conducted an extensive evaluation, including benchmarking
against established tools such as ESAN, AddressSanitizer,
MEMCHECK, and ASAN−−, using the SPEC CPU2017
suite [58]. To provide clarity regarding the overhead intro-
duced by SHADOWBOUND itself, we also present results for
SHADOWBOUND performance on SPEC CPU2017. Further-
more, we compared SHADOWBOUND with DeltaPointer, the
state-of-the-art tool primarily focused on out-of-bounds detec-
tion. However, it’s worth noting that DeltaPointer exclusively
supports SPEC CPU2006 [57], and our attempts to migrate
it to SPEC CPU2017 were unsuccessful. Consequently, our
comparison between SHADOWBOUND and DeltaPointer is
based on SPEC CPU2006. Regrettably, due to code compati-
bility issues, we had to exclude 471.omnetpp and 401.bzip2
from the SPEC CPU2006 cases, as LLVM 15 failed to com-
pile these benchmarks due to these codes are too old. To
ensure fairness in our comparisons, we configured all tools
to disregard detected errors, preventing premature termina-
tion. Additionally, we only enabled ASAN−−, ESAN, and
AddressSanitizer’s heap error detector. In our evaluation, we
excluded PACMem and SGXBound due to their reliance on
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Figure 3: The runtime overhead of SHADOWBOUND and
DeltaPointer on SPEC CPU2006, the geometric mean over-
head of each system is 10.58% and 37.08%.

specialized hardware for heap memory error detection, as well
as the unavailability of their source code. For each tool, we
executed the benchmarks ten times and reported the average
results to mitigate the impact of randomness.

Figure 2 presents the results obtained from evaluating
SPEC CPU2017 benchmarks. Notably, ESAN encountered
issues and failed to execute the gcc and blender benchmarks.
As for MEMCHECK, it exhibited a significant performance
slowdown of over 4x in every test case, its geomean time and
memory overhead is 2426.66% and 92.95%, rendering its re-
sults unfit for inclusion in the figure. Furthermore, it is worth
highlighting that both ASAN−− and ESAN’s results were
inferior to AddressSanitizer. This discrepancy is attributed to
the fact that AddressSanitizer in LLVM 15 deployed more
advanced optimizations, whereas ASAN−− and ESAN are
based on older LLVM versions. The time overhead of SHAD-
OWBOUND itself is 5.72%, which demonstrates the efficiency
of SHADOWBOUND. All three variants of SHADOWBOUND
also performed admirably. In particular, SHADOWBOUND +
PUMM demonstrated the lowest average overhead (6.60%),
surpassing all tools that provide comprehensive heap memory
protection. The memory overhead of SHADOWBOUND itself
averaged at 54.59%, and SHADOWBOUND + PUMM also ex-
hibited the best memory overhead among all variants, better
than ASAN and ASAN−−. While it is slightly higher than
that of ESAN, we believe it is acceptable given the notable
performance improvements it offers.

To enhance our understanding of the scalability and per-
formance implications of SHADOWBOUND, we measured
several parameters related to heap usage. These include the
number of instrumentation points, the number of allocation
and deallocation operations per second, the amount of shadow
memory allocated for each program, and both heap allocation
and access frequencies (see Figure 6 in the Appendix). These
measurements were obtained by inserting counting instruc-

tions following each load and store operation, as well as allo-
cation and deallocation functions. We conducted linear regres-
sion to determine how significantly these parameters affect
the performance overhead. We found that performance is most
closely related to the frequency of heap access. The regression
coefficients for other parameters are close to zero, indicating
that they have little or no real relationship with time overhead.
Based on the frequency of heap accesses, we used 1GHz,
2GHz, and 3GHz as thresholds to categorize the programs
into four groups: lightweight, normal, heavy, and intensive
heap access. We found the geometric mean time overhead of
each group is 2.35%, 3.58%, 6.52%, and 29.66%, respectively.
This tiered classification also demonstrates a direct correla-
tion between the intensity of heap access and the performance
overhead. Based on the evaluation result, it becomes evident
that its adoption is particularly advantageous for lightweight,
normal and heavy heap access scenarios, where the method’s
low to moderate performance overhead can enhance security
and monitoring without significantly impacting functionality.
On the other hand, for data-intensive and high-performance
computing applications, which fall into the intensive heap
access categories, the method’s higher performance overhead
necessitates a more cautious approach.

Figure 3 presents the time overhead of SHADOWBOUND
and DeltaPointer on SPEC2006. SHADOWBOUND exhibits
lower overhead in nearly all test cases, with the exceptions
being h264ref and dealII. The geometric mean of the time
overhead for SHADOWBOUND is also significantly better than
that of DeltaPointer. In terms of memory overhead, Delta-
Pointer achieves an average memory overhead of zero, while
SHADOWBOUND incurs an average memory overhead of
68.21%, which is higher than DeltaPointer. It’s worth mention-
ing that while DeltaPointer may have lower memory overhead,
it restricts available address space to 4GB, limiting its scal-
ability for large-scale programs. Additionally, DeltaPointer
does not provide defense against underflow errors, whereas
SHADOWBOUND offers improved security in this regard.

Regarding the variation in time overhead observed in SPEC
CPU2006 and SPEC CPU2017, which stand at 10.58% and
5.72% respectively, we have identified the cause. This dis-
crepancy arises from certain test cases within SPEC2006,
such as hmmer, dealII, and h264ref, which contain func-
tions exhibiting distinctive patterns that are challenging for
SHADOWBOUND to optimize effectively. To exacerbate mat-
ters, the test input often leads to these functions consuming
over 50% of the program’s execution time, amplifying the
impact of the instrumentation. However, we believe that these
issues are more prevalent in smaller-scale programs. Our sub-
sequent experiments demonstrate that larger-scale programs
are less likely to encounter such problems.
NGINX To assess SHADOWBOUND’s performance in a real-
world, large-scale application, we conducted experiments us-
ing Nginx v1.22.1 and the wrk v4.2.0 benchmarking tool.
These experiments utilized a configuration of 8 threads, 100



System Output Latency (µs)
(req/s) Average 50% 75% 90% 99%

NATIVE 158,847 611 592 604 623 748
SHADOWBOUND 147,550 650 640 649 668 767

SB + MarkUs 124,361 777 759 770 803 890
SB + FFMalloc 110,406 870 860 880 900 1000
SB + PUMM 79,229 1220 1200 1220 1270 1460

Table 4: Evaluation Results of Native, SHADOWBOUND and
its variants: Output and Latency Analysis on Nginx. In the
Latency column, Average denotes the average latency of the
requested connections, while the remaining values depict la-
tency distribution.
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Figure 4: Runtime overhead comparison of SHADOWBOUND
and its variants on the Chakra engine: The geometric mean
overhead for each system is 4.17%, 7.28%, 7.86%, 13.28%.

connections, and a test duration of 60 seconds. To ensure
consistency, we repeated the test 30 times and recorded the
average results. The findings are presented in Table 4. SHAD-
OWBOUND experiences 6.47% and 2.54% time overhead for
the average and tail (99%) latencies, respectively; these results
illustrate SHADOWBOUND’s efficiency and practicality in
real-world applications. Among variants of SHADOWBOUND,
SHADOWBOUND + MarkUs delivers the best performance,
experiencing 27.23% and 18.98% time overhead for the aver-
age and tail latencies, respectively.

Chakra In addition to Nginx, we also evaluated the perfor-
mance of SHADOWBOUND, as well as SHADOWBOUND +
PUMM, SHADOWBOUND + FFMalloc and SHADOWBOUND
+ MarkUs on the Chakra. Chakra is a high-performance
JavaScript engine developed by Microsoft. Our assessment
encompassed four key benchmarks integrated into Chakra:
Octane, Kraken, SunSpider, and JetStream. As depicted in Fig-
ure 4, our evaluation demonstrates that SHADOWBOUND con-
sistently delivers excellent performance on the Chakra plat-
form. The results indicate that SHADOWBOUND introduces
minimal overhead, showcasing its robust compatibility with
real-world applications. Particularly noteworthy is the perfor-
mance of SHADOWBOUND + PUMM and SHADOWBOUND +
FFMalloc, which demonstrates exceptional efficiency. These
findings underscore SHADOWBOUND’s capability to deliver
acceptable overheads on large-scale applications.

Website Native SHADOWBOUND Overhead

www.google.com 1202 1237 2.93%
www.facebook.com 932 950 2.01%
www.amazon.com 2399 2444 1.87%
www.openai.com 1544 1577 2.16%
www.twitter.com 1580 1634 3.45%
www.gmail.com 1791 1822 1.75%

www.youtube.com 2244 2374 5.79%
www.wikipedia.org 1085 1133 4.42%
www.netflix.com 1415 1448 2.36%

Geomean - - 2.74%

Benchmark Octane Kraken SunSpider Geomean

SHADOWBOUND 3.60% 3.30% 5.50% 4.03%

Table 5: Runtime overhead on Chromium: website loading
times and JavaScript benchmarks.

Chromium To assess the performance and compatibility
of SHADOWBOUND, we conducted an evaluation using the
Chromium browser. Chromium is one of the largest and most
widely used software, making it an ideal candidate for show-
casing SHADOWBOUND’s capabilities. We employed three
JavaScript benchmarks, Octane, Kraken, and SunSpider, to
test SHADOWBOUND’s performance. Additionally, we mea-
sured the loading times of the 9 most popular websites ac-
cording to the Top Websites Ranking [63], a critical metric
for enhancing the browsing experience. To ensure accurate
loading time measurements, we recorded the average loading
time for the nine most popular websites.

It is important to note that during our experiments, we en-
countered difficulties when attempting to dynamically load
the allocators for FFMalloc and MarkUs into Chromium;
Chromium immediately raised a segmentation fault upon run-
ning the program. According to the stack trace, FFMalloc
aborted at the re-allocation function, and MarkUs aborted
when creating the new thread. Additionally, PUMM requires
fuzzing the program and analyzing the trace files. However,
PUMM’s analysis algorithm proved to be very slow and
memory-consuming in our experiments. We attempted anal-
ysis for over 24 hours, yet PUMM still failed to produce
results and ran out of memory. Consequently, we are present-
ing results exclusively for the SHADOWBOUND. Our evalu-
ation includes three benchmarks integrated into Chromium
and assesses the access speed of nine popular websites. For
each benchmark experiment, we conducted 30 repetitions
and calculated the geometric mean values to mitigate the im-
pact of random variations. The results are presented in Table
5.Nearly all website loading time overheads remained be-
low 5%, demonstrating that SHADOWBOUND has minimal
influence on the browsing experience for users.

7.3 Ablation Study
In our evaluation of SHADOWBOUND’s performance on the
SPEC CPU2017 suite, we demonstrate the system’s perfor-
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Figure 5: Ablation study result of SHADOWBOUND on SPEC CPU2017. From left to right, the bars show the time overhead
of SHADOWBOUND with full optimization, SHADOWBOUND with each optimization disabled, and SHADOWBOUND without
optimization. The geomean value of each setting is 5.72%, 9.51%, 11.56%, 11.76% 12.86%, 29.28% and 99.69%.

mance with full optimization enabled. These optimizations
include Runtime-Driven Checking Elimination (rt-elim), Di-
rectional Boundary Checking (dir), Security Pattern Identi-
fication (pattern), Merge Metadata Operation (merge), and
Redundant Checking Elimination (rdt-elim). To isolate the
effects of each optimization, we conducted an ablation study
consisting of seven experiments. Five of these experiments
involved disabling one of these optimizations, while two ad-
ditional experiments enabled or disabled all optimizations to-
gether. These experiments provided valuable insights into the
system’s complete capabilities and its original performance,
allowing us to precisely measure the contributions of each
optimization to system performance.

The results presented in Figure 5 highlight the significant
performance improvements achieved with SHADOWBOUND’s
optimizations, compared to scenarios without them. The opti-
mization reduces overhead from 99.69% to 5.72%. Among
these optimizations, Runtime-Driven Checking Elimination
stands out; without it, the overhead increases to 29.28%. Dis-
abling other optimizations, specifically Directional Boundary
Checking Optimization, Merge Metadata Extraction, Redun-
dant Checking Elimination, and Security Pattern Identifica-
tion, results in overheads of 12.86%, 11.76%, 11.56%, and
9.51%, respectively. While the effectiveness of these opti-
mizations may vary across different test cases, each one is
essential in the majority of them. These results emphasize
the importance of these optimizations in enhancing SHAD-
OWBOUND’s performance. Furthermore, the results indicate
that moving the checking position from pointer dereference to
pointer arithmetic itself does not reduce overhead. As shown
in subsection 7.2, the overhead for ASAN is 62.03%, and
the overhead for unoptimized SHADOWBOUND is 99.69%.
The primary difference between them lies in the checking
position. Therefore, performing checks at the point of pointer
arithmetic does not lead to a reduction in overhead.

8 Discussion

Intra-Object Out-Of-Bounds As SHADOWBOUND checks
at the granularity of heap chunks or objects, which is deter-
mined at the time of allocation, it does not provide support for
preventing out-of-bounds errors that occur within the same
object. For instance, it cannot prevent an out-of-bounds access
from one array field to another field within the same structure.
Consequently, SHADOWBOUND shares the same weakness
as prior works [24, 32, 33, 36, 39,51]. The boundary within an
object’s inner fields is not determined by the allocated size but
rather by the object’s type. If desired, SHADOWBOUND has
the capability to relocate shadow memory initialization from
the allocation site to the type casting site. We will consider
this as a potential area for future work.

Pointer Casting Given that SHADOWBOUND relies on point-
ers for boundary checking, it’s important to note that de-
velopers can write code containing implicit type casts and
pointer-integer conversions in low-level languages like C/C++.
For implicit type casts, although C/C++ allows this practice,
a properly configured LLVM always generates an explicit
type casting instruction [49]. Therefore, SHADOWBOUND
can effectively handle implicit type casts. With regard to
the conversion between pointers and integers, there is po-
tential for out-of-bounds issues during integer computation
instructions. This vulnerability is also noted in several prior
works [24, 36, 45, 73]. However, it’s crucial to emphasize
that developers typically have benign intentions, and some
established C/C++ standards [44, 64] discourage conversions
between integers and pointers unless the developers have a
comprehensive understanding of the potential consequences.
Consequently, occurrences of such errors are exceptionally
rare. In fact, during our extensive evaluation, we did not en-
counter any such cases. Nevertheless, we acknowledge this
as a potential source of false negatives.



Stack Protection While the design of SHADOWBOUND does
not provide protection against stack out-of-bounds vulnerabil-
ities, it is indeed feasible to enhance SHADOWBOUND’s capa-
bilities in this regard. LLVM IR employs explicit instructions
for allocating objects on the stack. Consequently, SHADOW-
BOUND can establish the bounds of stack objects by storing
this information in the shadow memory at the time of stack
allocation. Alternatively, SHADOWBOUND can be integrated
with mature solutions such as shadow memory-based solu-
tions [19, 35], hardware-based solutions (e.g., ARM PA [61]),
or hybrid solutions (e.g., Intel CET [52]). Even though these
solutions also use shadow memory, SHADOWBOUND was
designed with the possibility of integration in mind, so the
shadow memory region of the stack is reserved. We believe
that these methods are sufficient to protect the stack from
attacks such as Return-Oriented Programming (ROP) while
providing minimal overhead.
Dynamic Library SHADOWBOUND is capable of safeguard-
ing a dynamic library, provided it has been instrumented by
our tool. Should a dynamic library not undergo instrumen-
tation, SHADOWBOUND retains the ability to detect out-of-
bounds errors occurring externally. For instance, if a pointer
originating within the library triggers an overflow outside of
it, SHADOWBOUND can identify such errors. This is due to
SHADOWBOUND’s comprehensive monitoring of all memory
management APIs, enabling precise tracking of every object’s
boundaries.
Future Optimization SHADOWBOUND still possesses op-
timization potential in both compiler optimization and meta-
data management aspects. Regarding compiler optimization,
SHADOWBOUND does not fully harness the capabilities of
Link-Time Optimization (LTO) [41] and Profile Guided Opti-
mization (PGO) [50]. We believe that boundary checking can
be further optimized by leveraging additional interprocedu-
ral analysis techniques and profiling feedback data. In terms
of metadata management, given that SHADOWBOUND is a
pure software solution, metadata extraction can be further en-
hanced by incorporating certain hardware features to maintain
the metadata, such as Intel MPX [48] and CHERI [69].

9 Related Work
Checking Optimization Compiler optimization techniques
are commonly employed to optimize out-of-bounds check-
ing. Many previous works [24, 34, 36, 39] have leveraged
general optimization techniques to enhance checking perfor-
mance or eliminate redundant checks. Additionally, there are
some works [75, 76] that have designed custom optimization
techniques to optimize Address Sanitizer’s [51] checking.
These optimization techniques can reduce a certain amount
of overhead but cannot have an order of magnitude impact.
The optimization technology of SHADOWBOUND has sig-
nificantly reduced overhead and has made SHADOWBOUND
practical.

Boundary Annotation LLVM introduced a new feature
called -fbounds-safety [25]. This feature allows program-
mers to manually designate length variables for pointers,
thereby enabling the compiler to insert boundary checking in-
structions for these pointers. While a direct performance com-
parison between SHADOWBOUND and -fbounds-safety is
not feasible due to the latter’s reliance on human annotations,
combining -fbounds-safety with SHADOWBOUND could
be beneficial. This is because neither is consistently superior
to the other in all scenarios. For pointers with lengths that
are already annotated, the -fbounds-safety flag may not
require extra instructions to fetch the array length, potentially
resulting in better performance. However, -fbounds-safety
cannot address out-of-bounds errors caused by type down-
casting, while SHADOWBOUND can, as it instruments pointer
casting instructions. On the other hand, annotating all pointer
length variables requires significant human effort and may not
always be feasible. In contrast, SHADOWBOUND can man-
age these cases automatically without the need for human
annotation.

Pointer Tagging Pointer Tagging is a common technique for
storing the boundary in out-of-bounds detection or defense
tools. Some studies [33,34] store complete boundary informa-
tion in the high-order bits of the pointer, eliminating the need
to retrieve boundary information from memory. However, the
available high-order bits are not sufficient to contain all the
necessary boundary information. These approaches reduce
available memory space, which may lead to potential com-
patibility issues with large-scale programs. To encode more
information in the pointers without shrinking the memory
space, other studies [24, 27, 36] have implemented custom
allocators that allow the original pointer to convey additional
boundary information. PACMem [39] uses ARM PA to gener-
ate a key stored in the high-order bits. This key is then used as
an index to store the actual boundary information in shadow
memory. The complexity of these encoding algorithm usually
introduce additional arithmetic and memory operations that
could potentially impact performance.

10 Conclusion

This work introduces SHADOWBOUND, an innovative heap
memory protection design. SHADOWBOUND utilizes ad-
vanced metadata management and customized compiler op-
timization to provide a robust heap out-of-bound defense.
We integrated it with three state-of-the-art use-after-free de-
fenses without compatibility issues. Ensuring both temporal
and spatial memory protection, SHADOWBOUND maintains a
minimal performance and memory impact. Experimental re-
sults demonstrate its effectiveness and efficiency in defending
against heap memory vulnerabilities, especially in programs
written in unsafe languages.
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A Statistic of SPEC CPU2017 Benchmark

Program Instrument Count Operation Per Second Shadow Memory Alloc Freq Access Freq
#extraction #checking alloc dealloc (KB) (MB/s) (GHz)

deepsjeng 9 17 0.02 0.01 121160 3.59 0.06
leela 113 132 176,400.76 176,400.73 58484 223.81 0.20
omnetpp 2590 3015 1,698,303.59 1,698,266.30 326756 214.96 0.96

nab 780 1214 1,414.20 1,077.32 176892 7.03 1.12
mcf 49 99 2,224.47 2,224.47 80364 8.58 1.23
blender 15479 22445 70,776.19 70,776.14 1297236 55.24 1.34
gcc 13571 17516 816,831.53 794,791.98 10995204 2,935.12 1.39
xz 279 631 0.45 0.37 78908 13.41 1.50
lbm 10 244 0.05 0.05 110196 3.17 1.85

perlbench 6377 7909 597,526.88 592,088.88 657444 53.42 2.11
povray 2111 2672 547.42 547.32 51372 0.09 2.45
imagick 4237 5374 123,346.30 123,346.10 61668 16.00 2.51
xalancbmk 10449 12589 968,286.71 968,286.70 647992 459.19 2.96

namd 1274 4088 127.59 126.66 199664 2.69 3.26
x264 4759 6677 20.68 20.67 456384 1.07 3.26
parest 33368 39771 631,792.47 631,792.30 1091476 697.83 5.34

Regr. Coef. 3.88×10−4 3.43×10−4 2.68×10−6 2.53×10−6 2.10×10−6 6.42×10−3 4.99

Table 6: Statistic of SPEC CPU2017 Benchmark. The table is sorted by Access Freq, heap access frequency, and it is divided
into four groups, categorizing programs as lightweight, normal, heavy, and intensive heap access from top to bottom, respectively.
The Instrument part indicates the number of instrumentation points inserted by the system. Operation Per Second section
indicates the number of allocation and deallocation operations per second. Shadow Memory displays the amount of shadow
memory allocated for each program. Alloc Freq represents the rate of memory allocation per second. Regr. Coef., the linear
regression coefficient, indicates the correlation between these indices and performance overhead. The coefficient is close to zero
suggesting there is minimal or no relationship between them.

B Realworld Security Evaluation

Source CVE/Issue ID Program Result

SANRAZOR

CVE-2015-9101 lame ✔OD
CVE-2016-10270 libtiff ✔BR
CVE-2016-10271 libtiff ✔OD
CVE-2017-7263 potrace ✔OD
2017-9167-9173 autotrace ✔OD
2017-9164-9166 autotrace ✔OD

ASAN−−

CVE-2006-6563 proftpd ✔OD
CVE-2009-2285 libtiff ✔OD
CVE-2013-4243 libtiff ✔OD
CVE-2014-1912 python ✔OD
CVE-2015-8668 libtiff ✔OD

MAGMA

CVE-2016-1762 libxml ✔BR
CVE-2016-1838 libxml ✔BR
CVE-2019-10872 poppler ✔OD
CVE-2019-9200 poppler ✔OD
CVE-2019-7310 poppler ✔OD
CVE-2013-7443 sqlite ✔OD

Table 7: Security evaluation for SHADOWBOUND on vulnabil-
ities from prior works.
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